• Title/Summary/Keyword: Sequence deletion

Search Result 210, Processing Time 0.027 seconds

Identification of the Calcium Binding Sites in Translationally Controlled Tumor Protein

  • Kim, Moon-Hee;Jung, Yoon-Wha;Lee, Kyung-Lim;Kim, Choon-Mi
    • Archives of Pharmacal Research
    • /
    • v.23 no.6
    • /
    • pp.633-636
    • /
    • 2000
  • Translationally controlled tumor protein (TCTP), also known as IgE-dependent histamine-releasing factor, is a growth-related tumor protein. Although the primary sequence of rat TCTP does not reveal any recognizable $Ca^{2+}$ -binding motif, previous studies have demonstrated that rat TCTP consisting of 172 amino acids is a $Ca^{2+}$ -binding protein. However. the region of TCTP required for $Ca^{2+}$ interaction has not been mapped to the molecule. Here, we reported that the $Ca^{2+}$ binding region of TCTP which was mapped by using a combination of deletion constructs of rat TCTP and $^{45}Ca^{2+}$-overlay assay. was confined to amino acid residues 81-112. This binding domain did not show any peculiar loop of calcium- binding motif such as CaLB domain and EF hand motif and it seems to be constituted of random coil regions neighboring the a helix. Thus, our data confirm that TCTP is a novel family of $Ca^{2+}$ -binding protein.

  • PDF

Isolation and Characterization of Paraquat-inducible Promoters from Escherichia coli

  • Lee, Joon-Hee;Roe, Jung-Hye
    • Journal of Microbiology
    • /
    • v.35 no.4
    • /
    • pp.277-283
    • /
    • 1997
  • Promoters inducible by paraquat, a superocide-generating agent, were isolated from Escherichia coli using a promoter-probing plasmid pRS415 with promoterless lacA gene. Twenty one promoters induced by paraquat were selected and further characterized. From sequence analysis, thirteen of the promoters were mapped to their specific loci on the Escherichia coli chromosome. Several promoters were mapped to the upstream of known genes such as usgl, katG, and mglB, whose relationships with superoxide response have not been previously reported. Other promoters were mapped to the upstream region of unknown open reading frames. Downstream of HC 96 promoter are uncharacterized ORFs whose sequences are homologous to ABC-transporter subunits. Downstream of HC84 promoter is an ORF encoding a transcriptional regulator-like protein, which contains a LysR family-specific HTH (helix-turn-helix) DNA bindign motif. We investigated whether these promoters belong to the soxRS regulon. All promoters except HC96 were found to belong to the soxRS regulon. The HC96 promoter was significantly induced by paraquat in the soxRS deletion mutant strain. The basal transcription level of three promoters (HE43, HC71, HD94) significantly increased at the stationary phase, implying that they are regulated by RpoS. However, paraquat inducibility of all promoters disappeared in the stationary phase, suggesting that SoxRS regulatory system is active only in rapidly growing cells.

  • PDF

Characterization of the Replication Region of the Enterococcus faecalis Plasmid p703/5

  • Song, Joon-Seok;Park, Jin-Hwan;Kim, Chan-Wha;Kim, Young-Woo;Lim, Wang-Jin;Kim, Ick-Young;Chang, Hyo-Ihl
    • Journal of Microbiology and Biotechnology
    • /
    • v.9 no.1
    • /
    • pp.91-97
    • /
    • 1999
  • In this work, a 1.9-kb region of enterococcal plasmid p703/5 was isolated and the nucleotide sequence analysis of the region was performed. One major open reading frame (ORF) was identified encoding a polypeptide of 28 kDa. Database comparisons suggested that the protein showed some homology with other bacterial RepA proteins. Upstream of the ORF, a potential dnaA box, AT-rich region and 22-bp tandemly repeated sequences (DNA iterons), a feature typical for many replication ori sites, were recognized. Deletion analysis using Exonuclease III and several restriction enzymes indicated that the three elements and the gene product from the ORF were essential for replication and that the minimum unit of DNA required for replication resided on the 1.2-kb AvaII subfragment. Thus, this gene product was referred to as RepA.

  • PDF

Genome-Wide Screening of Saccharomyces cerevisiae Genes Regulated by Vanillin

  • Park, Eun-Hee;Kim, Myoung-Dong
    • Journal of Microbiology and Biotechnology
    • /
    • v.25 no.1
    • /
    • pp.50-56
    • /
    • 2015
  • During pretreatment of lignocellulosic biomass, a variety of fermentation inhibitors, including acetic acid and vanillin, are released. Using DNA microarray analysis, this study explored genes of the budding yeast Saccharomyces cerevisiae that respond to vanillin-induced stress. The expression of 273 genes was upregulated and that of 205 genes was downregulated under vanillin stress. Significantly induced genes included MCH2, SNG1, GPH1, and TMA10, whereas NOP2, UTP18, FUR1, and SPR1 were down regulated. Sequence analysis of the 5'-flanking region of upregulated genes suggested that vanillin might regulate gene expression in a stress response element (STRE)-dependent manner, in addition to a pathway that involved the transcription factor Yap1p. Retardation in the cell growth of mutant strains indicated that MCH2, SNG1, and GPH1 are intimately involved in vanillin stress response. Deletion of the genes whose expression levels were decreased under vanillin stress did not result in a notable change in S. cerevisiae growth under vanillin stress. This study will provide the basis for a better understanding of the stress response of the yeast S. cerevisiae to fermentation inhibitors.

VaSpoU1 (SpoU gene) may be involved in organelle rRNA/tRNA modification in Viscum album

  • Ahn, Joon-Woo;Kim, Suk-Weon;Liu, Jang-Ryol;Jeong, Won-Joong
    • Plant Biotechnology Reports
    • /
    • v.5 no.3
    • /
    • pp.289-295
    • /
    • 2011
  • The SpoU family of proteins catalyzes the methylation of transfer RNAs (tRNAs) and ribosomal RNAs (rRNAs). We characterized a putative tRNA/rRNA methyltransferase, VaSpoU1 of the SpoU family, from Viscum album (mistletoe). VaSpoU1 and other plant SpoU1s exhibit motifs of the SpoU methylase domain that are conserved with bacterial and yeast SpoU methyltransferases. VaSpoU1 transcripts were detected in the leaves and stems of V. album. VaSpoU1-GFP fusion proteins localized to both chloroplasts and mitochondria in Arabidopsis protoplasts. Sequence analysis similarly predicted that the plant SpoU1 proteins would localize to chloroplasts and mitochondria. Interestingly, mitochondrial localization of VaSpoU1 was inhibited by the deletion of a putative N-terminal presequence in Arabidopsis protoplasts. Therefore, VaSpoU1 may be involved in tRNA and/or rRNA methylation in both chloroplasts and mitochondria.

Short and Efficient Frequency Hopping Codes (짧고 효과적인 주파수 도약 수열 생성)

  • Kim Young-Joon;Kim Dae-Son;Song Hong-Yeop
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.4C
    • /
    • pp.318-323
    • /
    • 2006
  • In this paper we propose three methods to generate short hopping sequences for the frequency hopping system. First, we explain the one coincidence set of sequences and the polyphase power residue seqences which have been known previously, and we suggest a method by modifying the one coincidence sequence and two methods by using the power residue sequences. We verify that the optimal position deleted-power residue sequences have the best Hamming autocorrelation property and the first position deleted-power residue sequences and the modified one coincidence sequences follows with respect to Hamming autocorrelation. We also explain that these sequences have the good balance property and can be implemented with low complexity.

Rice NAC proteins act as homodimers and heterodimers

  • Jeong, Jin Seo;Park, Yeong Taek;Jung, Harin;Park, Su-Hyun;Kim, Ju-Kon
    • Plant Biotechnology Reports
    • /
    • v.3 no.2
    • /
    • pp.127-134
    • /
    • 2009
  • Members of the NAM-ATAF-CUC (NAC) protein family are plant-specific transcription factors that contain a highly conserved N-terminal NAC-domain and diverse C-terminal regions. They have been implicated in plant development and abiotic stress responses. To identify interacters of rice NAC-domain proteins (OsNACs), we performed yeast two-hybrid screening of rice cDNA library using OsNAC5 as a bait, and the results showed that OsNAC5 interacts with other OsNACs including itself. To delineate an interacting domain, a series of deletion constructs of four OsNACs were made and transformed into yeast in various combinations. The results revealed that the conserved NAC domain of OsNACs plays a primary role in homodimer and heterodimer formation, and a part of C-terminal sequence is also necessary for the interaction. In vitro pull-down assays using recombinant OsNAC proteins verified the dimer formations, together suggesting that OsNACs may act by forming homodimers and/or heterodimers in plants.

Signal transfduction pathways for infection structure formation in the rice blast fungus, Magnaporthe grisea

  • Lee, Yong-Hwan;Khang, Chang-Hyun
    • Proceedings of the Botanical Society of Korea Conference
    • /
    • 1999.07a
    • /
    • pp.41-44
    • /
    • 1999
  • Magnaporthe grisea (Hebert) Barr (anamorph: Pyricularia grisea) is a typical heterothallic Ascomycete and the causal agent of rice blast, one of the most destructive diseases on rice (Oryza sativa L.) worldwide. The interactions between cells of the pathogen and those of the host involve a complex of biological influences which can lead to blast disease. The early stages of infection process in particular may be viewed as a sequence of discrete and critical events. These include conidial attachment, gemination, and the formation of an appressorium, a dome-shaped and melanized infection structure. Disruption of this process at any point will result in failure of the pathogen to colonize host tissues. This may offer a new avenue for developing innovative crop protection strategies. To recognize and capture such opportunities, understanding the very bases of the pathogenesis at the cellular and molecular level is prerequisite. Much has been learned about environmental cues and endogenous signaling systems for the early infection-related morphogenesis in M. grisea during last several years. The study of signal transduction system in phytopathogenic filamentous fungi offers distinct advantages over traditional mammalian systems. Mammalian systems often contain multiple copies of important genes active in the same tissue under the same physiological processes. Functional redundancy, alternate gene splicing, and specilized isoforms make defining the role of any single gene difficult. Fungi and animals are closely related kingdoms [3], so inferences between these organisms are often justified. For many genes, fungi frequently possess only a single copy, thus phenotype can be attributed directly to the mutation or deletion of any particular gene of interest.

  • PDF

북한산 국립공원의 식물상

  • 이영노
    • Proceedings of the Botanical Society of Korea Conference
    • /
    • 1985.08b
    • /
    • pp.19-22
    • /
    • 1985
  • Magnaporthe grisea (Hebert) Barr (anamorph: Pyricularia grisea) is a typical heterothallic Ascomycete and the causal agent of rice blast, one of the most destructive diseases on rice (Oryza sativa L.) worldwide. The interactions between cells of the pathogen and those of the host involve a complex of biological influences which can lead to blast disease. The early stages of infection process in particular may be viewed as a sequence of discrete and critical events. These include conidial attachment, gemination, and the formation of an appressorium, a dome-shaped and melanized infection structure. Disruption of this process at any point will result in failure of the pathogen to colonize host tissues. This may offer a new avenue for developing innovative crop protection strategies. To recognize and capture such opportunities, understanding the very bases of the pathogenesis at the cellular and molecular level is prerequisite. Much has been learned about environmental cues and endogenous signaling systems for the early infection-related morphogenesis in M. grisea during last several years. The study of signal transduction system in phytopathogenic filamentous fungi offers distinct advantages over traditional mammalian systems. Mammalian systems often contain multiple copies of important genes active in the same tissue under the same physiological processes. Functional redundancy, alternate gene splicing, and specilized isoforms make defining the role of any single gene difficult. Fungi and animals are closely related kingdoms [3], so inferences between these organisms are often justified. For many genes, fungi frequently possess only a single copy, thus phenotype can be attributed directly to the mutation or deletion of any particular gene of interest.

  • PDF

Isolation of N-Acetylmuramoyl-L-Alanine Amidase Gene (amiB) from Vibrio anguillarum and the Effect of amiB Gene Deletion on Stress Responses

  • Ahn Sun-Hee;Kim Dong-Gyun;Jeong Seung-Ha;Hong Gyeong-Eun;Kong In-Soo
    • Journal of Microbiology and Biotechnology
    • /
    • v.16 no.9
    • /
    • pp.1416-1421
    • /
    • 2006
  • We identified a gene encoding the N-acetylmuramoyl L-alanine amidase (amiB) of Vibrio anguillarum, which catalyzes the degradation of peptidoglycan in bacteria. The entire open reading frame (ORF) of the amiB gene was composed of 1,722 nucleotides and 573 amino acids. The deduced amino acid sequence of AmiB showed a modular structure with two main domains; an N-terminal region exhibiting an Ami domain and three highly conserved, continuously repeating LysM domains in the C-terminal portion. An amiB mutant was constructed by homologous recombination to study the biochemical function of the AmiB protein in V. anguillarum. Transmission electron microscopy (TEM) revealed morphological differences, and that the mutant strain formed trimeric and tetrameric unseparated cells, suggesting that this enzyme is involved in the separation of daughter cells after cell division. Furthermore, inactivation of the amiB gene resulted in a marked increase of sensitivity to oxidative stress and organic acids.