Journal of Korean Society of Industrial and Systems Engineering
/
v.42
no.4
/
pp.126-134
/
2019
Nowadays, since there are so many big data available everywhere, those big data can be used to find useful information to improve design and operation by using various analysis methods such as data mining. Especially if we have event log data that has execution history data of an organization such as case_id, event_time, event (activity), performer, etc., then we can apply process mining to discover the main process model in the organization. Once we can find the main process from process mining, we can utilize it to improve current working environment. In this paper we developed a new method to find a final diagnosis of a patient, who needs several procedures (medical test and examination) to diagnose disease of the patient by using process mining approach. Some patients can be diagnosed by only one procedure, but there are certainly some patients who are very difficult to diagnose and need to take several procedures to find exact disease name. We used 2 million procedure log data and there are 397 thousands patients who took 2 and more procedures to find a final disease. These multi-procedure patients are not frequent case, but it is very critical to prevent wrong diagnosis. From those multi-procedure taken patients, 4 procedures were discovered to be a main process model in the hospital. Using this main process model, we can understand the sequence of procedures in the hospital and furthermore the relationship between diagnosis and corresponding procedures.
Pattern discovery in biological sequences (e.g., DNA sequences) is one of the most challenging tasks in computational biology and bioinformatics. So far, in most approaches, the number of occurrences is a major measure of determining whether a pattern is interesting or not. In computational biology, however, a pattern that is not frequent may still be considered very informative if its actual support frequency exceeds the prior expectation by a large margin. In this paper, we propose a new interesting measure that can provide meaningful biological information. We also propose an efficient index-based method for mining such interesting patterns. Experimental results show that our approach can find interesting patterns within an acceptable computation time.
The authors used association rules and patterns in sequential of data mining in order to raise the efficiency of engineering changes. The association rule can reduce the number of engineering changes since it can estimate the parts to be changed. The patterns in sequential can perform engineering changes effectively by estimating the parts to be changed from sequence estimation. According to this result, unnecessary engineering changes are eliminated and the number of engineering changes decrease. This method can be used for improving design quality and productivity in company managing engineering changes and related information.
International Journal of Internet, Broadcasting and Communication
/
v.7
no.1
/
pp.20-22
/
2015
Recently, the study of smart phone user habits has become a highly focused topic due to the rapid growth of the smart phone market. Indeed, sequential pattern analysis methods were efficiently used for web-based user habit mining long time ago. However, by means of simulations, it has been observed that these methods might fail for smart phone-based user habit mining. In this paper, we propose a novel approach that leads to a considerably increased performance of the traditional sequential pattern analysis methods by reasonably cutting off each chronological sequence of user logs on a device into shorter ones, which represent the sequential user activities in various periods of a day.
Journal of Korean Society of Industrial and Systems Engineering
/
v.28
no.3
/
pp.166-171
/
2005
With development of the database, there are too many data on process variables and the manufacturing process for the traditional statistical process control methods to identify the process variables related with assignable causes. Data mining is useful in this situation and provides variety of approaches for improving the process. In this paper, we applied control charts to monitor the process and if assignable causes are detected, then we applied the SVM technique and the sequence pattern analysis to find out the process variables suspected. These techniques made possible to predict the behavior of process variables. We illustrated our proposed methods with real manufacturing process data.
Korean Journal of Computational Design and Engineering
/
v.6
no.4
/
pp.263-270
/
2001
In stamping-die manufacturing, the first step is to build die patterns for lost wax casting process. A recent industry trend is to manufacture the die pattern using 3-axis NC machining. This study identifies technical considerations of the pattern machining caused by the characteristics of Styrofoam material, and proposes technical methods related to establishing a process plan and generating tool paths for optimizing the pattern machining. In this paper, the process plan includes the fellowing three items: 1) deter-mining a global machining sequence-a sequence of profile, top, bottom machining and two set-ups, 2) extracting machining features from a pattern model and merging them, and 3) determining a machining sequence of machining features. To each machining feature, this study determines the machining start point, generates the approach tool path, and proposes a tool path linking method fur reducing the distance of the cutter rapid motion. Finally, a smooth tool path generation and an automatic feedrate adjustment (AFA) method are introduced far raising the machining efficiency.
Journal of rehabilitation welfare engineering & assistive technology
/
v.2
no.1
/
pp.51-56
/
2009
This study was tried to analyze the diagnosis of patients with cerebral infarction by sequence modeling that was one of data mining analysis method and find out previous disease or complication of patients with cerebral infarction. Mass data that the diagnosis code of cerebral infarction was 163 in 2000 to 2007 were extracted from A hospital's database and then the data mart was constructed for analysis. Total 2,267 patients illnesses were diagnosed as cerebral infarction and 32,692 cases related diagnosis were extracted. Sequence modeling in Clementine 12.0 program was used to analyze diagnosis of patients with cerebral infarction and 8 meaningful rules were found in this paper. This result could be used as a basic data to make secondary cerebral infarction prevention program and to prevent complication of cerebral infarction.
Temporal data mining, the incorporation of temporal semantics to existing data mining techniques, refers to a set of techniques for discovering implicit and useful temporal knowledge from large quantities of temporal data. Temporal knowledge, expressible in the form of rules, is knowledge with temporal semantics and relationships, such as cyclic pattern, calendric pattern, trends, etc. There are many examples of temporal data, including patient histories, purchaser histories, and web log that it can discover useful temporal knowledge from. Many studies on data mining have been pursued and some of them have involved issues of temporal data mining for discovering temporal knowledge from temporal data, such as sequential pattern, similar time sequence, cyclic and temporal association rules, etc. However, all of the works treated data in database at best as data series in chronological order and did not consider temporal semantics and temporal relationships containing data. In order to solve this problem, we propose a theoretical framework for temporal data mining. This paper surveys the work to date and explores the issues involved in temporal data mining. We then define a model for temporal data mining and suggest SQL-like mining language with ability to express the task of temporal mining and show architecture of temporal mining system.
This paper considers common due-date assignment and scheduling on parallel machines. The main decisions are: (a) deter-mining the common due-date; (b) allocating jobs to machines; and (c) sequencing the jobs assigned to each machine. The objective is to minimize the sum of the penalties associated with common due-date assignment, earliness and tardiness. As an extension of the existing studies on the problem, we consider sequence-dependent setup times that depend on the type of job just completed and on the job to be processed. The sequence-dependent setups, commonly found in various manufacturing systems, make the problem much more complicated. To represent the problem more clearly, a mixed integer programming model is suggested, and due to the complexity of the problem, two heuristics, one with individual sequence-dependent setup times and the other with aggregated sequence-dependent setup times, are suggested after analyzing the characteristics of the problem. Computational experiments were done on a number of test instances and the results are reported.
The manufacturing industry with Make-to-Order production system is difficult to decide the standard information for the product and the demand is variable to estimate. In this paper, we concerned with the process planning method using data mining in the manufacturing industry with Make-to-Order environment. The subject of our study is the industry transformer plant which is received an diverse order of customer and then produced the product. Currently, process planning method is classified the standard information by hand based on the acquired knowledge through the experience. The standard information stored the various information, such as work sequence, time and so on. This process planning method needs an experts which possesses the field experience for several years. For the product specification which is varied in each order, current process planning method is not efficient due to need many times To solve this problem, we extract the information using data mining process for each processing time, and then construct the knowledge base. We propose a method which is the process planning of the industry transformer product in Make-to-Order environment using the knowledge base.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.