• Title/Summary/Keyword: Sequence Mining

Search Result 164, Processing Time 0.021 seconds

Diagnosis Analysis of Patient Process Log Data (환자의 프로세스 로그 정보를 이용한 진단 분석)

  • Bae, Joonsoo
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.42 no.4
    • /
    • pp.126-134
    • /
    • 2019
  • Nowadays, since there are so many big data available everywhere, those big data can be used to find useful information to improve design and operation by using various analysis methods such as data mining. Especially if we have event log data that has execution history data of an organization such as case_id, event_time, event (activity), performer, etc., then we can apply process mining to discover the main process model in the organization. Once we can find the main process from process mining, we can utilize it to improve current working environment. In this paper we developed a new method to find a final diagnosis of a patient, who needs several procedures (medical test and examination) to diagnose disease of the patient by using process mining approach. Some patients can be diagnosed by only one procedure, but there are certainly some patients who are very difficult to diagnose and need to take several procedures to find exact disease name. We used 2 million procedure log data and there are 397 thousands patients who took 2 and more procedures to find a final disease. These multi-procedure patients are not frequent case, but it is very critical to prevent wrong diagnosis. From those multi-procedure taken patients, 4 procedures were discovered to be a main process model in the hospital. Using this main process model, we can understand the sequence of procedures in the hospital and furthermore the relationship between diagnosis and corresponding procedures.

Efficient Mining of Interesting Patterns in Large Biological Sequences

  • Rashid, Md. Mamunur;Karim, Md. Rezaul;Jeong, Byeong-Soo;Choi, Ho-Jin
    • Genomics & Informatics
    • /
    • v.10 no.1
    • /
    • pp.44-50
    • /
    • 2012
  • Pattern discovery in biological sequences (e.g., DNA sequences) is one of the most challenging tasks in computational biology and bioinformatics. So far, in most approaches, the number of occurrences is a major measure of determining whether a pattern is interesting or not. In computational biology, however, a pattern that is not frequent may still be considered very informative if its actual support frequency exceeds the prior expectation by a large margin. In this paper, we propose a new interesting measure that can provide meaningful biological information. We also propose an efficient index-based method for mining such interesting patterns. Experimental results show that our approach can find interesting patterns within an acceptable computation time.

Raise the efficiency of engineering changes using Data mining - B Electronics Case - (데이터마이닝을 이용한 설계변경의 효율향상 - B전자의 사례를 중심으로 -)

  • Park, Seung-Hun;Lee, Seog-Hwan
    • Journal of the Korea Safety Management & Science
    • /
    • v.9 no.3
    • /
    • pp.135-142
    • /
    • 2007
  • The authors used association rules and patterns in sequential of data mining in order to raise the efficiency of engineering changes. The association rule can reduce the number of engineering changes since it can estimate the parts to be changed. The patterns in sequential can perform engineering changes effectively by estimating the parts to be changed from sequence estimation. According to this result, unnecessary engineering changes are eliminated and the number of engineering changes decrease. This method can be used for improving design quality and productivity in company managing engineering changes and related information.

Detecting smartphone user habits using sequential pattern analysis

  • Lu, Dang Nhac;Nguyen, Thu Trang;Nguyen, Thi Hau;Nguyen, Ha Nam;Choi, Gyoo Seok
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.7 no.1
    • /
    • pp.20-22
    • /
    • 2015
  • Recently, the study of smart phone user habits has become a highly focused topic due to the rapid growth of the smart phone market. Indeed, sequential pattern analysis methods were efficiently used for web-based user habit mining long time ago. However, by means of simulations, it has been observed that these methods might fail for smart phone-based user habit mining. In this paper, we propose a novel approach that leads to a considerably increased performance of the traditional sequential pattern analysis methods by reasonably cutting off each chronological sequence of user logs on a device into shorter ones, which represent the sequential user activities in various periods of a day.

Identification Process Variables and Process Improvement Using Data Mining (데이터마이닝을 이용한 공정변수 확인 및 공정개선)

  • Jeong, Young-Soo;Gang, Chang-Uk;Byeon, Seong-Kyu
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.28 no.3
    • /
    • pp.166-171
    • /
    • 2005
  • With development of the database, there are too many data on process variables and the manufacturing process for the traditional statistical process control methods to identify the process variables related with assignable causes. Data mining is useful in this situation and provides variety of approaches for improving the process. In this paper, we applied control charts to monitor the process and if assignable causes are detected, then we applied the SVM technique and the sequence pattern analysis to find out the process variables suspected. These techniques made possible to predict the behavior of process variables. We illustrated our proposed methods with real manufacturing process data.

Technical Issues in Pattern Machining (패턴 가공에서의 기술적인 고려사항)

  • 김보현;최병규
    • Korean Journal of Computational Design and Engineering
    • /
    • v.6 no.4
    • /
    • pp.263-270
    • /
    • 2001
  • In stamping-die manufacturing, the first step is to build die patterns for lost wax casting process. A recent industry trend is to manufacture the die pattern using 3-axis NC machining. This study identifies technical considerations of the pattern machining caused by the characteristics of Styrofoam material, and proposes technical methods related to establishing a process plan and generating tool paths for optimizing the pattern machining. In this paper, the process plan includes the fellowing three items: 1) deter-mining a global machining sequence-a sequence of profile, top, bottom machining and two set-ups, 2) extracting machining features from a pattern model and merging them, and 3) determining a machining sequence of machining features. To each machining feature, this study determines the machining start point, generates the approach tool path, and proposes a tool path linking method fur reducing the distance of the cutter rapid motion. Finally, a smooth tool path generation and an automatic feedrate adjustment (AFA) method are introduced far raising the machining efficiency.

  • PDF

Analysis for Diagnosis of Patients with Cerebral Infarction by Sequence Modeling (순차규칙 모델링을 활용한 뇌경색증 환자 진단 분석)

  • Shin, A.M.;Park, H.J.;Lee, I.H.;Kim, Y.N.
    • Journal of rehabilitation welfare engineering & assistive technology
    • /
    • v.2 no.1
    • /
    • pp.51-56
    • /
    • 2009
  • This study was tried to analyze the diagnosis of patients with cerebral infarction by sequence modeling that was one of data mining analysis method and find out previous disease or complication of patients with cerebral infarction. Mass data that the diagnosis code of cerebral infarction was 163 in 2000 to 2007 were extracted from A hospital's database and then the data mart was constructed for analysis. Total 2,267 patients illnesses were diagnosed as cerebral infarction and 32,692 cases related diagnosis were extracted. Sequence modeling in Clementine 12.0 program was used to analyze diagnosis of patients with cerebral infarction and 8 meaningful rules were found in this paper. This result could be used as a basic data to make secondary cerebral infarction prevention program and to prevent complication of cerebral infarction.

  • PDF

Temporal Data Mining Framework (시간 데이타마이닝 프레임워크)

  • Lee, Jun-Uk;Lee, Yong-Jun;Ryu, Geun-Ho
    • The KIPS Transactions:PartD
    • /
    • v.9D no.3
    • /
    • pp.365-380
    • /
    • 2002
  • Temporal data mining, the incorporation of temporal semantics to existing data mining techniques, refers to a set of techniques for discovering implicit and useful temporal knowledge from large quantities of temporal data. Temporal knowledge, expressible in the form of rules, is knowledge with temporal semantics and relationships, such as cyclic pattern, calendric pattern, trends, etc. There are many examples of temporal data, including patient histories, purchaser histories, and web log that it can discover useful temporal knowledge from. Many studies on data mining have been pursued and some of them have involved issues of temporal data mining for discovering temporal knowledge from temporal data, such as sequential pattern, similar time sequence, cyclic and temporal association rules, etc. However, all of the works treated data in database at best as data series in chronological order and did not consider temporal semantics and temporal relationships containing data. In order to solve this problem, we propose a theoretical framework for temporal data mining. This paper surveys the work to date and explores the issues involved in temporal data mining. We then define a model for temporal data mining and suggest SQL-like mining language with ability to express the task of temporal mining and show architecture of temporal mining system.

Common Due-Date Assignment and Scheduling on Parallel Machines with Sequence-Dependent Setup Times

  • Kim, Jun-Gyu;Yu, Jae-Min;Lee, Dong-Ho
    • Management Science and Financial Engineering
    • /
    • v.19 no.1
    • /
    • pp.29-36
    • /
    • 2013
  • This paper considers common due-date assignment and scheduling on parallel machines. The main decisions are: (a) deter-mining the common due-date; (b) allocating jobs to machines; and (c) sequencing the jobs assigned to each machine. The objective is to minimize the sum of the penalties associated with common due-date assignment, earliness and tardiness. As an extension of the existing studies on the problem, we consider sequence-dependent setup times that depend on the type of job just completed and on the job to be processed. The sequence-dependent setups, commonly found in various manufacturing systems, make the problem much more complicated. To represent the problem more clearly, a mixed integer programming model is suggested, and due to the complexity of the problem, two heuristics, one with individual sequence-dependent setup times and the other with aggregated sequence-dependent setup times, are suggested after analyzing the characteristics of the problem. Computational experiments were done on a number of test instances and the results are reported.

Process Planning Method under Make-to-Order Production System using Data Mining (데이터마이닝을 이용한 수주생산시스템의 공정계획방안)

  • Oh, Kyung-Mo;Park, Chang-Kwon
    • IE interfaces
    • /
    • v.18 no.2
    • /
    • pp.148-157
    • /
    • 2005
  • The manufacturing industry with Make-to-Order production system is difficult to decide the standard information for the product and the demand is variable to estimate. In this paper, we concerned with the process planning method using data mining in the manufacturing industry with Make-to-Order environment. The subject of our study is the industry transformer plant which is received an diverse order of customer and then produced the product. Currently, process planning method is classified the standard information by hand based on the acquired knowledge through the experience. The standard information stored the various information, such as work sequence, time and so on. This process planning method needs an experts which possesses the field experience for several years. For the product specification which is varied in each order, current process planning method is not efficient due to need many times To solve this problem, we extract the information using data mining process for each processing time, and then construct the knowledge base. We propose a method which is the process planning of the industry transformer product in Make-to-Order environment using the knowledge base.