• Title/Summary/Keyword: Sequence Estimation

Search Result 508, Processing Time 0.025 seconds

In Vitro Imaging of MRI and Ultrasound for Gastric Carcinoma (위암 조직의 자기공명영상과 초음파 소견에 대한 비교 연구)

  • Kil, Sung-Won;Jee, Keum-Nahn
    • Investigative Magnetic Resonance Imaging
    • /
    • v.12 no.2
    • /
    • pp.178-187
    • /
    • 2008
  • Purpose : To evaluate and compare the diagnostic accuracy of MRI and ultrasound(US) for estimation of invasion depth of gastric carcinoma by correlation with histopathologic findings in vitro and to find out the best MR pulse sequence for detection and accurate delineation of tumor. Materials and Methods : Resected specimen of total or subtotal gastrectomy from 53 patients with gastric carcinoma were done of imaging studies of MRI and US. And US was examined by using high frequency linear transducer for tumor invasion depth by a radiologist. In each case, both imaging findings of MRI and US were evaluated independently for tumor detection and invasion depth by consensus of two radiologists and were compared the diagnostic accuracy between two imaging modalities according to the histopathologic findings. MR imaging with five MR pulse sequences, spin echo T1 and in- and out-of phase gradient echo T1 weighted images, FSE and SSFSE T2 weighted images, were performed. Five MR pulse sequences were evaluated and compared on the point of detection and accurate distinction of tumor from surrounding normal tissue. Results : In EGC, diagnostic accuracy of US(77%) was superior than that of MRI(59%) but no statistically significant difference was noted between two imaging modalities(p=0.096). In AGC, both imaging modalities of MRI and US showed relatively high diagnostic accuracy as 97% and 84% respectively. Diagnostic accuracy of MRI was statistically better than that of US at the significant level(p<0.001). The best MR pulse sequence among five in each specimen was FSE T2WI(75.5%, 40/53) in both EGC and AGC. In AGC, FSE T2WI showed excellent imaging quality by showing very high ratio (93.5%, 29/31) of accurate delineation of tumor. Conclusion : MRI and US show relatively high diagnostic accuracy in the evaluation of tumor invasion depth of resected specimen in AGC. The most excellent pulse sequence of MRI for the evaluation of tumor invasion depth is FSE T2WI on the point of detection and accurate delineation of tumor in both EGC and AGC.

  • PDF

Runoff assessment using radar rainfall and precipitation runoff modeling system model (레이더 강수량과 PRMS 모형을 이용한 유출량 평가)

  • Kim, Tae-Jeong;Kim, Sung-Hoon;Lee, Sung-Ho;Kim, Chang-Sung;Kwon, Hyun-Han
    • Journal of Korea Water Resources Association
    • /
    • v.53 no.7
    • /
    • pp.493-505
    • /
    • 2020
  • The rainfall-runoff model has been generally adopted to obtain a consistent runoff sequence with the use of the long-term ground-gauged based precipitation data. The Thiessen polygon is a commonly applied approach for estimating the mean areal rainfall from the ground-gauged precipitation by assigning weight based on the relative areas delineated by a polygon. However, spatial bias is likely to increase due to a sparse network of the rain gauge. This study aims to generate continuous runoff sequences with the mean areal rainfall obtained from radar rainfall estimates through a PRMS rainfall-runoff model. Here, the systematic error of radar rainfall is corrected by applying the G/R Ratio. The results showed that the estimated runoff using the corrected radar rainfall estimates are largely similar and comparable to that of the Thiessen. More importantly, one can expect that the mean areal rainfall obtained from the radar rainfall estimates are more desirable than that of the ground in terms of representing rainfall patterns in space, which in turn leads to significant improvement in the estimation of runoff.

A Development of Generalized Coupled Markov Chain Model for Stochastic Prediction on Two-Dimensional Space (수정 연쇄 말콥체인을 이용한 2차원 공간의 추계론적 예측기법의 개발)

  • Park Eun-Gyu
    • Journal of Soil and Groundwater Environment
    • /
    • v.10 no.5
    • /
    • pp.52-60
    • /
    • 2005
  • The conceptual model of under-sampled study area will include a great amount of uncertainty. In this study, we investigate the applicability of Markov chain model in a spatial domain as a tool for minimizing the uncertainty arose from the lack of data. A new formulation is developed to generalize the previous two-dimensional coupled Markov chain model, which has more versatility to fit any computational sequence. Furthermore, the computational algorithm is improved to utilize more conditioning information and reduce the artifacts, such as the artificial parcel inclination, caused by sequential computation. A generalized 20 coupled Markov chain (GCMC) is tested through applying a hypothetical soil map to evaluate the appropriateness as a substituting model for conventional geostatistical models. Comparing to sequential indicator model (SIS), the simulation results from GCMC shows lower entropy at the boundaries of indicators which is closer to real soil maps. For under-sampled indicators, however, GCMC under-estimates the presence of the indicators, which is a common aspect of all other geostatistical models. To improve this under-estimation, further study on data fusion (or assimilation) inclusion in the GCMC is required.

Implementation of a Kinematic Network-Based Single-Frequency GPS Measurement Model and Its Simulation Tests for Precise Positioning and Attitude Determination of Surveying Vessel (동적네트워크 기반 단일주파수 GPS 관측데이터 모델링을 통한 측량선의 정밀측위 및 자세각결정 알고리즘 구현과 수치실험에 의한 성능분석)

  • Hungkyu, Lee;Siwan, Lyu
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.33 no.2
    • /
    • pp.131-142
    • /
    • 2015
  • In order to support the development of a cost-effective river bathymetric system, this research has focused on modeling GPS observables, which are obtained by array of five single-frequency receivers (i.e., two references and three rovers) to estimate the high accurate kinematic position, and the surveying vessel altitude. Also, by applying all GPS measurements as multiple-baselines with constraining rover baselines, we derived the socalled ‘kinematic network model.’ From the model, the integer-constrained least-squares (LS) for position estimation and the implicit LS for attitude determination were implemented, while a series of simulation tests with respect to the baseline lengths around 2km performed to demonstrate its accuracy analysis. The on-the-fly (OTF) ambiguity resolution tests revealed that ninety-nine percents of time-to-fix-first ambiguity (TTFF) can be decided in less than two seconds, when the positioning accuracy of ambiguity-fixed solutions was assessed as the greater than or equal to one and two centimeters in horizontal and vertical, respectively. Comparing to the GPS-derived attitudes, the achievable accuracy gradually descended in sequence of yaw, pitch and roll due to the antenna geometric configuration. Furthermore, the RMSE values for the baseline lengths of three to six meters were within ±1′for yaw, and less than ±10′and ±20′for pitch and roll, respectively, but those of between six to fifteen meters were less than ±1′for yaw, ±5′for pitch, and ±10′for roll.

Spatial Distribution and Variation of Long-range Transboundary Air Pollutants Flux during 1997~2004 (장거리이동 대기오염물질 이동량의 공간적 분포와 변화 추이(1997~2004))

  • Han J. S.;Kim Y. M.;Ahn J. Y.;Kong B. J.;Choi J. S.;Lee S. U.;Lee S. J.
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.22 no.1
    • /
    • pp.99-106
    • /
    • 2006
  • Aircraft measurements have been executed for the purpose of monitoring the long range transported air pollution and estimation of air pollutant in/out-flux over the Yellow sea. Total 74 missions of measurements have been done since 1997, mainly in spring and fall. The main study domain was over $124^{\circ}$E $/sim$ $124^{\circ}$E, $35^{\circ}$N $/sim$ $37^{\circ}$N below 3,000m. In long-term trends, mixing ratios of $SO_{2}$N were around 2 ppbv expect in summer ( < 1 ppbv). NOx exhibited 24 ppbv and have no clear annual trends over the Yellow Sea. The concentrations of 03 were 51, 58, 41 ppbv in spring, summer and fall-winter, respectively. Backward trajectory was performed for three days to investigate the source regions of the air mass. Six regions were divided around Korea peninsular centering at $36^{\circ}$N, $126^{\circ}$E. I, II, III, IV and V regions represents in sequence northeast China and Siberia, Sandong peninsula and Balhae gulf, Sanghi and southern China, the south Pacific included Jeju island and the East sea included Japan. L region correspond to the airmass from Korea peninsula. Influx of $SO_{2}$N was approximately five times higher than outflux in yearly flux variation and showed a decreasing long-term trend since 1998. NOx outflux was average 0.095 ton/km/hr and three times higher than $SO_{2}$ outflux. In/out flux of 03 showed even distribution in yearly basis except 2002 (influx 5.45 ton/km/hr). The transported amounts from I, II, III regions were much higher than those from other region. In seasonal flux variation, influx levels of gas phases were the lowest in summer and the levels gradually increased from fall toward spring. As a result, transport of pollutants begins from fall and prevails in winter and spring.

Improvement of Fat Suppression and Artifact Reduction Using IDEAL Technique in Head and Neck MRI at 3T

  • Hong, Jin Ho;Lee, Ha Young;Kang, Young Hye;Lim, Myung Kwan;Kim, Yeo Ju;Cho, Soon Gu;Kim, Mi Young
    • Investigative Magnetic Resonance Imaging
    • /
    • v.20 no.1
    • /
    • pp.44-52
    • /
    • 2016
  • Purpose: To quantitatively and qualitatively compare fat-suppressed MRI quality using iterative decomposition of water and fat with echo asymmetry and least-squares estimation (IDEAL) with that using frequency selective fat-suppression (FSFS) T2- and postcontrast T1-weighted fast spin-echo images of the head and neck at 3T. Materials and Methods: The study was approved by our Institutional Review Board. Prospective MR image analysis was performed in 36 individuals at a single-center. Axial fat suppressed T2- and postcontrast T1-weighted images with IDEAL and FSFS were compared. Visual assessment was performed by two independent readers with respect to; 1) metallic artifacts around oral cavity, 2) susceptibility artifacts around upper airway, paranasal sinus, and head-neck junction, 3) homogeneity of fat suppression, 4) image sharpness, 5) tissue contrast of pathologies and lymph nodes. The signal-to-noise ratios (SNR) for each image sequence were assessed. Results: Both IDEAL fat suppressed T2- and T1-weighted images significantly reduced artifacts around airway, paranasal sinus, and head-neck junction, and significantly improved homogeneous fat suppression in compared to those using FSFS (P < 0.05 for all). IDEAL significantly decreased artifacts around oral cavity on T2-weighted images (P < 0.05, respectively) and improved sharpness, lesion-to-tissue, and lymph node-to-tissue contrast on T1-weighted images (P < 0.05 for all). The mean SNRs were significantly improved on both T1- and T2-weighted IDEAL images (P < 0.05 for all). Conclusion: IDEAL technique improves image quality in the head and neck by reducing artifacts with homogeneous fat suppression, while maintaining a high SNR.

Development of Intelligent Multiple Camera System for High-Speed Impact Experiment (고속충돌 시험용 지능형 다중 카메라 시스템 개발)

  • Chung, Dong Teak;Park, Chi Young;Jin, Doo Han;Kim, Tae Yeon;Lee, Joo Yeon;Rhee, Ihnseok
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.9
    • /
    • pp.1093-1098
    • /
    • 2013
  • A single-crystal sapphire is used as a transparent bulletproof window material; however, few studies have investigated the dynamic behavior and fracture properties under high-speed impact. High-speed and high-resolution sequential images are required to study the interaction of the bullet with the brittle ceramic materials. In this study, a device is developed to capture the sequence of high-speed impact/penetration phenomena. This system consists of a speed measurement device, a microprocessor-based camera controller, and multiple CCD cameras. By using a linear array sensor, the speed-measuring device can measure a small (diameter: up to 1 2 mm) and fast (speed: up to Mach 3) bullet. Once a bullet is launched, it passes through the speed measurement device where its time and speed is recorded, and then, the camera controller computes the exact time of arrival to the target during flight. Then, it sends the trigger signal to the cameras and flashes with a specific delay to capture the impact images sequentially. It is almost impossible to capture high-speed images without the estimation of the time of arrival. We were able to capture high-speed images using the new system with precise accuracy.

Auto-Segmentation Algorithm For Liver-Vessel From Abdominal MDCT Image (복부 MDCT 영상으로부터 간혈관 자동 추출 알고리즘)

  • Park, Seong-Me;Lee, You-Jin;Park, Jong-Won
    • Journal of Korea Multimedia Society
    • /
    • v.13 no.3
    • /
    • pp.430-437
    • /
    • 2010
  • It is essential for living donor liver transplantation that surgeon must understand the hepatic vessel structure to improve the success rate of operation. In this paper, we extract the liver boundary without other surrounding structures such as heart, stomach, and spleen using the contrast enhanced MDCT liver image sequence. After that, we extract the major hepatic veins (left, middle, right hepatic vein) with morphological filter after review the basic structure of hepatic vessel which reside in segmented liver image region. The purpose of this study is provide the overall status of transplantation operation with size estimation of resection part which is dissected along with the middle hepatic vein. The method of liver extraction is as follows: firstly, we get rid of background and muscle layer with gray level distribution ratio from sampling process. secondly, the coincident images match with unit mesh image are unified with resulted image using the corse coordinate of liver and body. thirdly, we extract the final liver image after expanding and region filling. Using the segmented liver images, we extract the hepatic vessels with morphological filter and reversed the major hepatic vessels only with a results of ascending order of vessel size. The 3D reconstructed views of hepatic vessel are generated after applying the interpolation to provide the smooth view. These 3D view are used to estimate the dissection line after identify the middle hepatic vein. Finally, the volume of resection region is calculated and we can identify the possibility of successful transplantation operation.

Estimation of Geochemical Evolution Path of Groundwaters from Crystalline Rock by Reaction Path Modeling (반응경로 모델링을 이용한 결정질암 지하수의 지구화학적 진화경로 예측)

  • 성규열;박명언;고용권;김천수
    • Economic and Environmental Geology
    • /
    • v.35 no.1
    • /
    • pp.13-23
    • /
    • 2002
  • The chemical compositions of groundwaters from the granite areas mainly belong to Ca-HC0$_{3}$ and Na-HC0$_{3}$type, and some of these belong to Ca-(CI+S0$_{4}$) and Na-(CI+S0$_{4}$) type. Spring waters and groundwaters from anorthosite areas belong to Ca-HC03 and Na-HC03 type, respectively. The result of reaction path modeling shows that the chemical compositions of aqueous solution reacted with granite evolve from initial Ca-CI type, via CaHC0$_{3}$ type, to Na-HC0$_{3}$ type. The result of rain water-anorthosite interaction is similar to evolution path of granite reaction and both of these results agree well with the field data. In the reaction path modeling of rain watergranite/anorthosite reaction, as a reaction is progressing, the activity of hydrogen ion decreases (pH increases). The concentrations of cations are controlled by the dissolution of rock-forming minerals and precipitation and re-dissolution of secondary minerals according to the pH. The continuous addition of granite causes the formation of secondary minerals in the following sequence; gibbsite plus hematite, Mn-oxide, kaolinite, silica, chlorite, muscovite (a proxy for illite here), calcite, laumontite, prehnite, and finally analcime. In the anorthosite reaction, the order of precipitation of secondary minerals is the same as with granite reaction except that there is no silica precipitation and paragonite precipitates instead of analcime. The silica and kaolinite are predominant minerals in the granite and anorthosite reactions, respectively. Total quantities of secondary minerals in the anorthosite reaction are more abundant than those in the granite reaction.

Behavior Characteristics of Cement Bentonite Impervious Walls Related to Mixing Methods and Curing Time (강화벤토나이트 차수벽체의 배합방법 및 양생일에 따른 거동 특성)

  • Hwang, Jungsoon;Kim, Seungwook;Jung, Jungi;Lee, Seungjoo;Oh, Byeungsam;Baek, Seungcheol
    • Journal of the Korean GEO-environmental Society
    • /
    • v.17 no.12
    • /
    • pp.45-54
    • /
    • 2016
  • In this study, the construction method of new underground continuos impervious wall that the bentonite slurry keeps the stability of excavated trench and the mixture of cement and bentonite plays a role as a constituent of impervious wall in the trench. The merit of homogeneity of the method so called as a cement-bentonite slurry wall enables to accurately make an estimation of hydraulic conductivity of the walls compared with that by other general grouting methods and to verify their waterproof efficiency without difficulty at the design stage. The use of cement-bentonite slurry walls for the containment of groundwater flow has also proven a cost-effective impervious wall technology by employing the simple combination of construction equipments and easy and fast construction procedures. The engineering characteristics of cement-bentonite impervious wall obtained by carrying out the laboratory experiments under various conditions. This study reveals the effect of variation of constituent materials and their mixing methods (Water-Cement-Bentonite) on the engineering characteristics of a composition. Also, this study makes some recommendations on the optimum mixing ratio and mixing sequence for the best quality at the site. That is the most important factors to estimate the construction cost and design of the technique. The comparison is lastly made to evaluate the effect of ordinary Portland and blast furnace slag cement as a bonding material on the behavior of impervious walls.