• Title/Summary/Keyword: Septic tanks

Search Result 25, Processing Time 0.022 seconds

A Waterborne Outbreak and Detection of Cryptosporidium Oocysts in Drinking Water of an Older High-Rise Apartment Complex in Seoul

  • Cho, Eun-Joo;Yang, Jin-Young;Lee, Eun-Sook;Kim, Se-Chul;Cha, So-Yang;Kim, Sung-Tek;Lee, Man-Ho;Han, Sun-Hee;Park, Young-Sang
    • Parasites, Hosts and Diseases
    • /
    • v.51 no.4
    • /
    • pp.461-466
    • /
    • 2013
  • From May to June 2012, a waterborne outbreak of 124 cases of cryptosporidiosis occurred in the plumbing system of an older high-rise apartment complex in Seoul, Republic of Korea. The residents of this apartment complex had symptoms of watery diarrhea and vomiting. Tap water samples in the apartment complex and its adjacent buildings were collected and tested for 57 parameters under the Korean Drinking Water Standards and for additional 11 microbiological parameters. The microbiological parameters included total colony counts, Clostridium perfringens, Enterococcus, fecal streptococcus, Salmonella, Shigella, Pseudomonas aeruginosa, Cryptosporidium oocysts, Giardia cysts, total culturable virus, and Norovirus. While the tap water samples of the adjacent buildings complied with the Korean Drinking Water Standards for all parameters, fecal bacteria and Cryptosporidium oocysts were detected in the tap water samples of the outbreak apartment complex. It turned out that the agent of the disease was Cryptosporidium parvum. The drinking water was polluted with sewage from a septic tank in the apartment complex. To remove C. parvum oocysts, we conducted physical processes of cleaning the water storage tanks, flushing the indoor pipes, and replacing old pipes with new ones. Finally we restored the clean drinking water to the apartment complex after identification of no oocysts.

EU Water Framework Directive-River Basin Management Planning in Ireland

  • Earle, R.;Almeida, G.
    • Environmental Engineering Research
    • /
    • v.15 no.2
    • /
    • pp.105-109
    • /
    • 2010
  • The European Union (EU) Water Framework Directive (WFD) (2000/60/EC) was transposed into Irish law by Statutory Instrument Nos. 722 of 2003, 413 of 2005 and 218 of 2009, which set out a new strategy and process to protect and enhance Ireland's water resources and water-dependent ecosystems. The Directive requires a novel, holistic, integrated, and iterative process to address Ireland's natural waters based on a series of six-year planning cycles. Key success factors in implementing the Directive include an in-depth and balanced treatment of the ecological, economic, institutional and cultural aspects of river basin management planning. Introducing this visionary discipline for the management of sustainable water resources requires a solemn commitment to a new mindset and an overarching monitoring and management regime which hitherto has never been attempted in Ireland. The WFD must be implemented in conjunction with a myriad of complimentary directives and associated legislation, addressing such key related topics as flood/drought management, biodiversity protection, land use planning, and water/wastewater and diffuse pollution engineering and regulation. The critical steps identified for river basin management planning under the WFD include: 1) characterization and classification of water bodies (i.e., how healthy are Irish waters?), 2) definition of significant water pressures (e.g., agriculture, forestry, septic tanks), 3) enhancement of measures for designated protected areas, 4) establishment of objectives for all surface and ground waters, and 5) integrating these critical steps into a comprehensive and coherent river basin management plan and associated programme of measures. A parallel WFD implementation programme critically depends on an effective environmental management system (EMS) approach with a plan-do-check-act cycle applied to each of the evolving six-year plans. The proactive involvement of stakeholders and the general public is a key element of this EMS approach.

EMP Shielding Effectiveness of Water Pipe Structure Considering Attenuation Characteristics of Water (물의 감쇠특성을 고려한 배수관 구조의 EMP 차폐 효과 분석)

  • Kim, Woobin;Kim, Sangin;Kim, Waedeuk;Yook, Jong-Gwan
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.28 no.12
    • /
    • pp.1011-1014
    • /
    • 2017
  • Additional metal shielding is installed in the water pipes used in septic tanks to protect against damage from electromagnetic pulse (EMP) events. This shielding prevents EMP damage, but impurities present in water cannot pass through the shielding structure. Thus, the original function of the water pipes is lost as the pipes are blocked, and an additional maintenance workforce is needed to manage this blockage. To solve this problem, we propose a water pipe without an additional shielding structure; the proposed pipe was designed with consideration of the attenuation characteristics of water. The immersed depth was varied from 400 mm to 800 mm, while the diameter of the pipe was fixed at 100 mm. The shielding effectiveness increased from 70 dB to 100 dB around 2 GHz. Through the verification process, we propose an effective design guideline that can maintain the function of the water pipe and provide protection from EMP damages without additional shielding structure.

A Study on Bio-chemical Sewer Pipe Corrosion In Korea (하수관거의 생·화학적 부식특성에 관한 연구)

  • Kim, Hwan-Gi;Song, Ho-Myeon
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.22 no.3
    • /
    • pp.565-573
    • /
    • 2000
  • Sewer pipe in Korea is generally constructed with concrete pipes. Moreover, the sewer system is susceptible to the corrosion problem due to the regulation employing anaerobic treatment processes, such as domestic sewage treatment facilities, nightsoil septic tanks and so on. The objective of this study is investigated to experimental test of $H_2S$ production rate affecting corrosion of sewer pipe in Korea. In this study, tube-type and sealed-type reactor were used to examine the reactions in the microorganism suspended growth and biofilm. Furthermore. concentration changes were investigated with COD and sulfate reduction in each reactor. Sulfide production rate was $50.4mg-H_2S/g-VSS{\cdot}d$ in the sealed-type reactor and in the tube-type biofilm reactor was $2.8{\sim}18.8g-H_2S/m^2{\cdot}d$.

  • PDF

Regional Trend Analysis for Groundwater Quality in Jeju Island - Focusing on Chloride and Nitrate Concentrations - (제주도 지하수 수질의 광역적 추세 특성 분석 - 염소 및 질산성질소를 대상으로 -)

  • Kim, Gyoo-Bum;Kim, Ji-Wook;Won, Jong-Ho;Koh, Gi-Won
    • Journal of Korea Water Resources Association
    • /
    • v.40 no.6 s.179
    • /
    • pp.469-483
    • /
    • 2007
  • Nitrate and chloride are the most common contaminants in groundwater and their concentrations increase easily due to fertilizer consumption and urbanization. The number of time series data for groundwater quality at a single site was not sufficient to analyze trends on Jeju Island. Therefore rectangle grids were drawn for the whole island and single grid was determined to be $500m{\times}500m$ after considering similar stream density, homogeneous hydraulic coefficients, geologic features of volcanic rock and low topographic slopes. All data within each lattice were collected and arranged in time series order and analyzed using Sen's method. 10.6 % of the total lattices for chloride and 22.4% for nitrate showed upward trends from the early 1990's to the early 2000's. Especially, upward trends for nitrate concentration are distinct in the low mid-mountainous areas of western and southern watersheds. Many septic tanks and much domestic waste from the urbanization of the low mid-mountainous area have produced this upward trend. Additionally, the agricultural region has dramatically increased since the 1990's and this has led to an increase of fertilizer consumption and, as a result, nitrate concentration. Therefore, the target of any management plan for groundwater quality on Jeiu Island needs to be focused on careful land use decisions in the mid-mountainous areas which are near Halla Mountain.