• Title/Summary/Keyword: Separator Properties

Search Result 91, Processing Time 0.028 seconds

Current Status and Future Research Directions of Separator Membranes for Lithium-Ion Rechargeable Batteries (리튬이차전지용 분리막 이해 및 최신 연구 동향)

  • Kim, Jung-Hwan;Lee, Sang-Young
    • Membrane Journal
    • /
    • v.26 no.5
    • /
    • pp.337-350
    • /
    • 2016
  • Lithium-ion rechargeable batteries (LIBs) have garnered increasing attention with the rapid advancements in portable electronics, electric vehicles, and grid-scale energy storage systems which are expected to drastically change our future lives. This review describes a separator membrane, one of the key components in LIBs, in terms of porous structure and physicochemical properties, and its recent development trends are followed. The separator membrane is a kind of porous membrane that is positioned between a cathode and an anode. Its major functions involve electrical isolation between the electrodes while serving as an ionic transport channel that is filled with liquid electrolyte. The separator membranes are not directly involved in redox reactions of LIBs, however, their aforementioned roles significantly affect performance and safety of LIBs. A variety of research approaches have been recently conducted in separator membranes in order to further reinforce battery safeties and also widen chemical functionalities. This review starts with introduction to commercial polyolefin separators that are currently most widely used in LIBs. Based on this understanding, modified polyolefin separators, nonwoven separators, ceramic composite separators, and chemically active separators will be described, with special attention to their relationship with future research directions of advanced LIBs.

Study on a Separator for the Zn-Br Redox Flow Battery (Zn-Br 레독스 흐름 전지용 격막에 관한 연구)

  • Na, Il-Chae;Jo, Hong-Sic;Ryu, Cheol-Hwi;Hwang, Gab-Jin
    • Membrane Journal
    • /
    • v.24 no.5
    • /
    • pp.386-392
    • /
    • 2014
  • Two commercial membranes (porous membrane and cation exchange membrane) were evaluated as a separator in the Zn-Br redox-flow battery (ZBRFB). The performance properties of ZBRFB were test in the current density of $20mA/cm^2$. The electromotive forces (OCV at SOC 100%) of ZBRFB using SF-600 (porous membrane) and Nafion 117 (cation exchange membrane) were 1.87 V and 1.93 V, respectively. The cycle performance of ZBRFB using each membrane was evaluated during 7 cycles. The performance of ZBRFB using SF-600 membrane was 89.76%, 83.46% and 74.88% for average current efficiency, average voltage efficiency and average energy efficiency, respectively. The performance of ZBRFB using Nafion117 membrane was 97.7%, 76.33% and 74.56% for average current efficiency, average voltage efficiency and average energy efficiency, respectively.

A Study on Characterization of Polyethylene Separators Irradiated at Various Electron Beam Current Conditions (다양한 전자선 전류 조건에서 조사된 폴리에틸렌 분리막의 특성 연구)

  • Im, Jong-Su;Sohn, Joon-Yong;Shin, Jun-Hwa;Lim, Youn-Mook;Choi, Jae-Hak;Kim, Jeong-Soo;Nho, Young-Chang
    • Polymer(Korea)
    • /
    • v.34 no.1
    • /
    • pp.74-78
    • /
    • 2010
  • In this paper, crosslinked polyethylene (PE) separators for lithium secondary batteries were prepared by an electron beam irradiation under various beam currents and dose rates. The crosslinking degree increased up to maximum 71% with an increasing absorption dose and with a decreasing beam current. The PE separators irradiated at lower beam currents showed better thermal shrinkage (51%) and mechanical properties than the original PE separator and PE separators irradiated at higher beam current. The ionic conductivity ($1.01{\times}10^{-3}\;S/cm$) and electrolyte uptake (275%) of the crosslinked PE separators were comparable to the original PE separator.

Electrochemical properties of graphene coated aluminium alloy for PEM fell cell separator (고분자전해질 연료전지용 분리판의 적용을 위한 그라핀이 코팅된 알루미늄 합금의 전기화학적 특성)

  • Nam, Dae-Geun;Kim, Jeong-Su;Jo, Hyeong-Ho
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2011.05a
    • /
    • pp.36-36
    • /
    • 2011
  • 고분자 전해질 연료전지용 분리판은 가격비와 중량비가 높아 부품 가격 및 중량을 낮출 경우 파급 효과가 높을 것으로 예상된다. 일반적인 금속판들은 연료전지 스택 내의 산성 분위기에서 존재하므로 표면 부식이 쉽게 발행한다. 본 연구에서는 연료전지의 사용환경을 고려하여 금속판의 부식방지 및 표면특성 향상을 위해 그라핀을 코팅하였으며, 연료전지 스택 내부와 유사한 산화성 분위기를 모사하여 전기화학적 특성을 분석하였다.

  • PDF

Wetting Behavior of Molten Salt on the Ceramic Filter Separators for Thermal Batteries (열전지용 세라믹 필터 분리판내 용융염의 젖음 거동)

  • Cho, Kwang-Youn;Riu, Doh-Hyung;Huh, Seung-Hun;Shin, Dong-Geun;Kim, Hyoun-Ee;Choi, Jong-Hwa;Cheong, Hae-Won
    • Journal of the Korean Ceramic Society
    • /
    • v.45 no.7
    • /
    • pp.423-429
    • /
    • 2008
  • Ceramic Fiber separator is the promising material for thermal battery system because it reduces the production cost and offers the potential to a new application compared to a pellet type electrolyte. The molten salt electrolytes for thermal battery were prepared by the impregnation of the commercial glass filters such as GF-A, C and F (Whatman, USA) with two types of molten-lithium salts, LiCl-KCl and LiK-LiBr-LiF. The wetting properties were evaluated by wetting balance test and wetting angle measurement. The wetting behaviors were strongly affected by the composition of the molten salts and the pore structure of the glass separators. The optimum wetting conditions for maximum loading and effective retention of the molten electrolyte were also studied.

Preliminary Study on the Fuel Processing with Woody Biomass (I) - Physical Properties of Wood Chip - (목질계 바이오에너지자원의 연료화를 위한 기초연구(I) - 목재칲의 물리적 특성 -)

  • Hwang, Jin-Sung;Oh, Jae-Heun;Kim, Nam-Hun;Cha, Du-Song
    • Journal of Forest and Environmental Science
    • /
    • v.25 no.1
    • /
    • pp.75-84
    • /
    • 2009
  • This study was conducted to investigate the physical properties of wood chip for fuel processing with woody biomass. Seven species are selected and processed for testing physical properties by 3-type wood chippers which are commonly used in Korea. Wood chips produced by self-propelled drum chipper and fixed type wood chipper equipped with separator were uniform in size and shape. It was shown that the bulk density of produced wood chips was decreased with increasing the wood chip layer thickness, and oak chips prepared by self-propelled drum chipper and fixed type wood chipper showed the highest bulk density.

  • PDF

A Continuous Cell Separator Based on Gravity and Buoyant Forces in Fluids of Dissimilar Density (서로 다른 밀도의 유체 내 바이오 물질이 받는 중력과 부력 차를 이용한 연속적 세포 분리기)

  • Oh, Ae-Gyoung;Lee, Dong-Woo;Cho, Young-Ho
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.36 no.4
    • /
    • pp.391-395
    • /
    • 2012
  • We present a continuous cell separator that achieves density-dependent and size-independent cell separation based on the net force of gravity and buoyancy forces on the cells in dissimilar density fluids. Previous cell separators are, based on the size or dielectrophoretic property of the cells and, are suitable for size-dependent and density-independent cell separation. However, these properties can make it difficult to collect the same types of cells with the same density but with size variations. The present separator, however, is capable of collecting the same types of cells based on the cell density in the fluid. Regardless of cell size, the proposed chip isolates low density cells, (white blood cells, or WBCs) at the upper outlet while obtaining high-density cells (red blood cells, or RBCs) from the lower outlet based on density. Efficiency levels for separation of WBCs and RBCs were $90.9{\pm}9.1%$ and $86.4{\pm}1.99%$, respectively. The present separator therefore has the potential for use in the pretreatment of whole blood.

Characterization of Polyester Cloth as an Alternative Separator to Nafion Membrane in Microbial Fuel Cells for Bioelectricity Generation Using Swine Wastewater

  • Kim, Taeyoung;Kang, Sukwon;Sung, Je Hoon;Kang, Youn Koo;Kim, Young Hwa;Jang, Jae Kyung
    • Journal of Microbiology and Biotechnology
    • /
    • v.26 no.12
    • /
    • pp.2171-2178
    • /
    • 2016
  • Polyester cloth (PC) was selected as a prospective inexpensive substitute separator material for microbial fuel cells (MFCs). PC was compared with a traditional Nafion proton exchange membrane (PEM) as an MFC separator by analyzing its physical and electrochemical properties. A single layer of PC showed higher mass transfer (e.g., for $O_2/H^+/ions$) than the Nafion PEM; in the case of oxygen mass transfer coefficient ($k_o$), a rate of $50.0{\times}10^{-5} cm{\cdot}s^{-1}$ was observed compared with a rate of $20.8{\times}10^{-5}cm/s$ in the Nafion PEM. Increased numbers of PC layers were found to reduce the oxygen mass transfer coefficient. In addition, the diffusion coefficient of oxygen ($D_O$) for PC ($2.0-3.3{\times}10^{-6}cm^2/s$) was lower than that of the Nafion PEM ($3.8{\times}10^{-6}cm^2/s$). The PC was found to have a low ohmic resistance ($0.29-0.38{\Omega}$) in the MFC, which was similar to that of Nafion PEM ($0.31{\Omega}$); this resulted in comparable maximum power density and maximum current density in MFCs with PC and those with Nafion PEMs. Moreover, a higher average current generation was observed in MFCs with PC ($104.3{\pm}15.3A/m^3$) compared with MFCs with Nafion PEM ($100.4{\pm}17.7A/m^3$), as well as showing insignificant degradation of the PC surface, during 177 days of use in swine wastewater. These results suggest that PC separators could serve as a low-cost alternative to Nafion PEMs for construction of cost-effective MFCs.

Electrochemical Properties of Activated Carbon Supercapacitors Adopting Hydrophilic Silica and Hydrogel Electrolytes (친수성 실리카와 하이드로겔 전해질이 적용된 활성탄 수퍼커패시터의 전기화학적 특성)

  • Lee, Hae Soo;Park, Jang Woo;Lee, Yong Min;Ryou, Myung Hyun;Kim, Kwang Man;Ko, Jang Myoun
    • Korean Chemical Engineering Research
    • /
    • v.54 no.3
    • /
    • pp.293-298
    • /
    • 2016
  • A hydrogel electrolyte consisting of 6 M KOH aqueous solution, potassium polyacrylate (PAAK, 3 wt.%), and a hydrophilic silica OX50 (1 wt.%) was prepared to use as an electrolyte medium coated on a Scimat separator of activated carbon supercapacitor. The silica particle distributed homogeneously on surface pores of the separator to increase ionic conductivity and electrochemical stability of the hydrogel electrolyte. The silica addition also involved superior specific capacitance even at higher scan rates due to decrease in interfacial resistance between hydrogel electrolyte and activated carbon electrode.

Optical Characteristic Analysis of Bilge Water for Developing an Oil Content Meter (유분검출기 개발을 위한 빌지 배출수의 광특성 분석)

  • 최상화;황정웅;정병건
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.25 no.2
    • /
    • pp.311-320
    • /
    • 2001
  • Since 1998 for protection of marine pollution, all ships must have oil filtering equipment and 15ppm bilge alarms which satisfy Requirements of MARPOL 73/78. Oily-water separator used in machinery area of ships usually consists of two parts; one is filtering equipment and the other is oil content meter(OCM). This study presents optical characteristics of bilge were acquired form oil content sensing module. The oil content sensing module consists of IR-LED light source, photo-diode light receivers, and a glass tube for bilge water sample. The experiment with the bilge water demonstrates various valuable optical properties. These optical properties suggest notes and guides to make the low-cost, easy operation and good performance commercial type OCM that satisfy the requirements of MARPOL 73/78.

  • PDF