• 제목/요약/키워드: Separation technique of heavy metal

검색결과 8건 처리시간 0.024초

폐금속 광산지역 농경지 납, 아연 오염 토양의 중금속 고도선별 (Enhanced Separation Technique of Heavy Metal (Pb, Zn) in Contaminated Agricultural Soils near Abandoned Metal Mine)

  • 박찬오;김진수;서승원;이영재;이재영;박미정;공성호
    • 한국지하수토양환경학회지:지하수토양환경
    • /
    • 제18권7호
    • /
    • pp.41-53
    • /
    • 2013
  • The study is to propose the optimal separation technique of heavy metals (Pb and Zn) contaminated in soil for improving the removal efficiency by various applicable techniques. The heavy metal contaminated soil samples near abandoned mine X-1 and X-2 were used for the study. Firstly, the wet classification process was shown more than 80% of removal efficiency for lead and zinc. Meanwhile, the magnetic separation process was shown low removal efficiency for lead and zincs because those heavy metals were non-magnetic materials. For the next step, the flotation separation process was shown approximately 24.4% of removal efficiency for zinc, while the gravity concentration process was shown approximately 57% of removal efficiency for lead, and 19.9% of removal efficiency for zinc, respectively. Therefore, zinc contaminated in soil would be effectively treated by the combination technique of the wet classification and the flotation technique. Meanwhile, lead contaminated in soil would be effectively treated by the combination technique of the wet classification process and the flotation process. Furthermore, the extraction of organic matter was shown more effective with aeration, 3% of hydrogen peroxide and 3% of lime such as calcium hydroxide.

Heavy metals removal from aqueous solution through micellar enhanced ultrafiltration: A review

  • Yaqub, Muhammad;Lee, Seung Hwan
    • Environmental Engineering Research
    • /
    • 제24권3호
    • /
    • pp.363-375
    • /
    • 2019
  • Micellar-enhanced ultrafiltration (MEUF) is a surfactant-based separation technique and has been investigated for the removal of heavy metals from wastewater. The performance of heavy metals removal from wastewater through MEUF relies on membrane characteristics, surfactant properties, various operational parameters including operating pressure, surfactant and heavy metal concentration, pH of the solution, temperature, and presence of dissolved solutes and salts. This study presents an overview of literature related to MEUF with respect to the all significant parameters including membranes, surfactants, operating conditions and MEUF hybrid processes. Moreover, this study illustrates that MEUF is an adaptable technique in various applications. Nowadays water contamination caused by heavy metals has become a serious concern around the globe. MEUF is a significant separation technique in wastewater treatment that should be acknowledged, for the reason that removal of heavy metals contamination even at lower concentrations becomes achievable, which is evidently made known in the presented review. Hybrid processes presented the better results as compared to MEUF. Future studies are required to continue the experimental work with various combinations of surfactant and heavy metals, and to investigate for the treatment of concentrated solutions, as well as for real industrial wastewater.

실관막모듈에 의한 중금속염 혼합용액으로부터 Cr(VI) 분리 (Separation of Cr(VI) from Heavy Metal Salts Mixed Solution by using Hollow Fiber Module)

  • 최대웅
    • 한국환경보건학회지
    • /
    • 제27권3호
    • /
    • pp.107-112
    • /
    • 2001
  • This work reports the application of a hollow fiber module(HFM) for Cr(VI) extraction from heavy metal salts mixed solution by using microporous hydrophobic hollow fiber module. In HFM configuration, the organic extraction used for the extraction of Cr(VI) was di-(2-ethyl hexyl) phosphoric acid(D2EHPA) diluted with n-heptane. The study of HFM includes the influence of hydrodynamic and chemical condition, i.e., the flow rate of feed solution, the time of reactive extraction, the concentration of feed solution, and the pH of aqueous phase solutions. Several experiments with synthetic solution of different mixed components system of Cr(VI) solutions established optimum condition to achieve a clean separation of Cr(VI). It was possible to separate Cr(VI) in the presence of metal salts mixed solution, such as Zn(II), Ni(II), Cu(II), and Cd(II) using the HFM technique.

  • PDF

AN ENGINEERING SCALE STUDY ON RADIATION GRAFTING OF POLYMERIC ADSORBENTS FOR RECOVERY OF HEAVY METAL IONS FROM SEAWATER

  • Prasad, T.L.;Saxena, A.K.;Tewari, P.K.;Sathiyamoorthy, D.
    • Nuclear Engineering and Technology
    • /
    • 제41권8호
    • /
    • pp.1101-1108
    • /
    • 2009
  • The ocean contains around eighty elements of the periodic table and uranium is also one among them, with a uniform concentration of 3.3 ppb and a relative abundance factor of 23. With a large coastline, India has a large stake in exploiting the 4 billion tonnes of uranium locked in seawater. The development of radiation grafting techniques, which are useful in incorporating the required functional groups, has led to more efficient adsorbent preparations in various geometrical configurations. Separation based on a polymeric adsorbent is becoming an increasingly popular technique for the extraction of trace heavy metals from seawater. Radiation grafting has provided definite advantages over chemical grafting. Studies related to thermally bonded non woven porous polypropylene fiber sheet substrate characterization and parameters to incorporate specific groups such as acrylonitrile (AN) into polymer back bones have been investigated. The grafted polyacrylonitrile chains were chemically modified to convert acrylonitrile group into an amidoxime group, a chelating group responsible for heavy metal uptake from seawater/brine. The present work has been undertaken to concentrate heavy metal ions from lean solutions from constant potential sources only. A scheme was designed and developed for investigation of the recovery of heavy metal ions such as uranium and vanadium from seawater.

Removal study of As (V), Pb (II), and Cd (II) metal ions from aqueous solution by emulsion liquid membrane

  • Dohare, Rajeev K.;Agarwal, Vishal;Choudhary, Naresh K.;Imdad, Sameer;Singh, Kailash;Agarwal, Madhu
    • Membrane and Water Treatment
    • /
    • 제13권4호
    • /
    • pp.201-208
    • /
    • 2022
  • Emulsion Liquid Membrane (ELM) is a prominent technique for the separation of heavy metal ions from wastewater due to the fast extraction and is a single-stage operation of stripping-extraction. The selection of the components (Surfactant and Carrier) of ELM is a very significant step for its preparation. In the ELM technique, the primary water- in-oil (W/O) emulsion is emulsified in water to produce water-in-oil-in-water (W/O/W) emulsion. The water in oil emulsion was prepared by mixing the membrane phase and internal phase. To prepare the membrane phase, the extractant D2EHPA (di-2-ethylhexylphosphoric acid) was used as a mobile carrier, Span-80 as a surfactant, and Paraffin as a diluent. Moreover, the internal (receiving) phase was prepared by dissolving sulphuric acid in water. Di-(2- ethylhexyl) phosphoric acid such as surfactant concentration, carrier concentration, sulphuric acid concentration in the receiving (internal) phase, agitation time (emulsion phase and feed phase), the volume ratio of the membrane phase to the receiving phase, the volume ratio of the external feed phase to the primary water-in-oil emulsion and pH of feed were studied on the percentage extraction of metal ions at 20℃. The results show that it is possible to remove 78% for As(V), 98% for Cd(II), and 99% for Pb(II). Emulsion Liquid Membrane (ELM) is a well-known technique for separating heavy metal ions from wastewater due to the fast extraction and is a single-stage operation of stripping-extraction. The selection of ELM components (Surfactant and Carrier) is a very significant step in its preparation. In the ELM technique, the primary water-in-oil (W/O) emulsion is emulsified to produce water-in-oil-in-water (W/O/W) emulsion. The water in the oil emulsion was prepared by mixing the membrane and internal phases. The extractant D2EHPA (di-2-ethylhexylphosphoric acid) was used as a mobile carrier, Span-80 as a surfactant, and Paraffin as a diluent. Moreover, the internal (receiving) phase was prepared by dissolving sulphuric acid in water. Di-(2-ethylhexyl) phosphoric acid such as surfactant concentration, carrier concentration, sulphuric acid concentration in the receiving (internal) phase, agitation time (emulsion phase and feed phase), the volume ratio of the membrane phase to the receiving phase, the volume ratio of the external feed phase to the primary water-in-oil emulsion and pH of feed were studied on the percentage extraction of metal ions at 20℃. The results show that it is possible to remove 78% for As(V), 98% for Cd(II), and 99% for Pb(II).

음이온 계면활성제 미셀형성을 이용한 중공사 한외여과막 시스템에서의 코발트(Co)이온 제거 (Removal of Co++ Ion in the Hollow Fiber Ultrafiltration System using Anion Surfactant Micellar Enhancement)

  • 양현수;한광희;최광순
    • 공업화학
    • /
    • 제7권1호
    • /
    • pp.109-117
    • /
    • 1996
  • 음이온 계면활성제의 미셀을 이용하여 한외여과막에서의 금속이온의 제거 기술은 분리공정이 간단하고 상변화가 필요없어 폐수로부터 중금속과 작은 분자량의 분자들을 제거할 수 있는 최근에 발전된 기술이다. 임계미셀농도 이상에서 계면활성제 분자들은 서로 모이고 거대분자 또는 미셀을 형성한다. 양이온의 코발트 이온과 음이온 계면활성제 미셀과의 정전기적인 결합으로 크기가 커진 거대분자가 한외여과막에서 제거되었다. 막투과압력차는 한외여과막에서의 금속의 제거율에 비교적 작은 영향을 끼치는 반면 음이온 계면활성제와 금속염간의 비(S/M)는 상당한 영향을 끼쳤다.

  • PDF

세라믹/금속판재의 고속충돌 파괴 유한요소 병렬 해석기법 (Parallel Computing Strategies for High-Speed Impact into Ceramic/Metal Plates)

  • 문지중;김승조;이민형
    • 한국전산구조공학회논문집
    • /
    • 제22권6호
    • /
    • pp.527-532
    • /
    • 2009
  • 고속충돌 파괴현상에 대한 병렬계산기법을 다루었다. 특히 세라믹 재료는 다른 연성 금속 재료와 달리 강성이 크고 가볍기 때문에 충돌 방호 구조물로 활용이 되고 있다. 재료의 고속 관통 문제의 경우 매우 짧은 시간에 대변형이 일어나며, 세라믹 재료의 깨지는 특성 때문에 실험적으로 이를 분석하기 매우 어렵다. 본 연구에서는 세라믹 파괴현상을 수치적으로 모사하기 위해 절점분리기법을(node separation scheme) 적용하였다. 절점분리기법의 제약으로는 재료의 파괴가 발생함에 따라 새로운 절점이 생기게 되고, 이로 인해 지속적으로 계산 시간이 늘어난다는 사실이다. 해석 시간을 단축하기 위해 MPI(Message Passing Interface)를 이용한 병렬화를 수행하였다. 고속충돌 문제의 특이사항으로 시간에 따라 각각의 프로세서에 할당된 영역의 계산량이 비균일 해지며, 이로 인한 병렬 성능의 저하가 발생한다. 본 연구에서는 이를 방지하기 위해 동적영역할당기법을 적용하였다. 고속충돌 문제 해석을 통하여 적용된 기법의 정확성 및 병렬 성능에 대해 기술하였다.

양이온의 전기화학적 분리를 위한 페리시안니켈 이온교환체의 제조에 관한 연구 (Preparation of Nickel Hexacyanoferrate Ion Exchanger for Electrochemical Separation of Cations)

  • 이지현;황영기
    • 공업화학
    • /
    • 제21권1호
    • /
    • pp.52-57
    • /
    • 2010
  • 중금속 이온이나 방사성 양이온을 처리하는 공정으로서 화학약품에 의한 침전법이나 일반 이온교환법을 가장 보편적으로 활용하고 있으나, 이 공정들은 약품의 과다 투여, 유효 금속의 폐기, 고형 폐기물에 의한 2차적인 토양 오염 유발 등과 같은 문제점을 가지고 있다. 이에 따라 최근 들어 선진국을 중심으로 전해환원 전착반응과 이온교환 반응을 결합시킨 전기화학적 이온교환법을 대체 신기술로 개발하고자 많은 관심과 연구가 집중되고 있다. 본 연구에서는 전기화학적 이온교환체 중의 하나인 nickel hexacyanoferrate (NiHCNFe)의 최적 제조조건을 규명하기 위해, 기지금속인 니켈판 표면에 화학적 방법과 전기화학적 방법으로 NiHCNFe 막을 생성하였으며, NiHCNFe의 구조 형태와 조성을 각각 SEM과 EDS 분석을 통하여 조사하였다. 또한 NiHCNFe 막이 생성된 니켈판을 운전전극으로 설치한 단일 평행평판 이온교환 전극반응기에서 산화-환원 전위를 연속적으로 순환시켜 순환전위곡선을 측정하고 피크 전류의 변화 거동을 조사하였다. 본 연구의 실험 결과에 의하면, 화학적으로 제조한 NiHCNFe가 전기화학적으로 제조한 경우보다 우수함을 알 수 있었고, 특히 118 h 화학반응시킨 NiHCNFe 이온교환체의 조밀도, 밀착성, 내구력이 가장 우수하게 나타났다.