• Title/Summary/Keyword: Separation rate

Search Result 1,376, Processing Time 0.029 seconds

SEPARATION OF CsCl FROM LiCl-CsCl MOLTEN SALT BY COLD FINGER MELT CRYSTALLIZATION

  • Versey, Joshua R.;Phongikaroon, Supathorn;Simpson, Michael F.
    • Nuclear Engineering and Technology
    • /
    • v.46 no.3
    • /
    • pp.395-406
    • /
    • 2014
  • This study provides a fundamental understanding of a cold finger melt crystallization technique by exploring the heat and mass transfer processes of cold finger separation. A series of experiments were performed using a simplified LiCl-CsCl system by varying initial CsCl concentrations (1, 3, 5, and 7.5 wt%), cold finger cooling rates (7.4, 9.8, 12.3, and 14.9 L/min), and separation times (5, 10, 15, and 30 min). Results showed a potential recycling rate of 0.36 g/min with a purity of 0.33 wt% CsCl in LiCl. A CsCl concentrated drip formation was found to decrease crystal purity especially for smaller crystal formations. Dimensionless heat and mass transfer correlations showed that separation production is primarily influenced by convective transfer controlled by cooling gas flow rate, where correlations are more accurate for slower cooling gas flow rates.

A study on the flow characteristics of non-Newtonian fluid flows in dividing tubes (분기관에서 비뉴턴 유체의 유동특성에 관한 연구)

  • 이행남;하옥남;전운학
    • Journal of Ocean Engineering and Technology
    • /
    • v.10 no.4
    • /
    • pp.118-127
    • /
    • 1996
  • Flow patterns of fluid flow in dividing trbe were visualized, and the energy losses due to dividing were measured in laminar dividing flow of the viscoelastic fluid and its solution in tube junctions with dividing angles of $90^{\circ}$, $60^{\circ}$, $65^{\circ}$ and $15^{\circ}$. Two separation zones were observed. swelling of the streamline to the main tube or to lateral tube was observed. The sizes of the separation zones depend on the Reynolds number, the dividing angle and the dividing flow rate. The energy loss coefficients decrease with increasing Reynolds number, but their decreasing rate decreases with increasing Reynolds number as the sizes of the separation zone increase. The effect of dividing angle on the energy loss coefficients and separation is greater for main tube than for the lateral tube.

  • PDF

Preparation and Characterization of Monolithic Poly(methacrylic acid - ethylene glycol dimethacrylate) Columns for High Performance Liquid Chromatography

  • Yan, Hong-yuan;Row, Kyung-Ho
    • Bulletin of the Korean Chemical Society
    • /
    • v.27 no.1
    • /
    • pp.71-76
    • /
    • 2006
  • Porous polymer monolithic columns were prepared by the direct free radical copolymerization of methacrylic acid and ethylene glycol dimethacrylate within the confines of a chromatographic column in the presence of toluene-dodecanol as a porogenic solvent. The separation characteristics of the monolithic columns were tested by a homologous series of xanthine derivatives, theophylline and caffeine. The effects of the polymerization mixture composition and polymerization condition, mobile phase composition, flow rate and temperature on the retention times and separation efficiencies were investigated. The results showed that the selection of correct porogenic solvents and appropriate polymerization conditions are crucial for the preparation of the monolithic stationary phases. The separation efficiency was only extremely weakly dependent on flow rate and temperatures. Hydrogen-bonding interaction played an important role in the retention and separation. Compared with conventional particle columns, the monolithic column exhibited good stability, ease of regeneration, high separation efficiency and fast analysis.

Synchrotron SAXS Study on the Micro-Phase Separation Kinetics of Segmented Block Copolymer

  • Lee, Han-Sup;Yoo, So-Ra;Seo, Seung-Won
    • Fibers and Polymers
    • /
    • v.2 no.2
    • /
    • pp.98-107
    • /
    • 2001
  • The phase transition behavior isothermal micro-phase separation kinetics of polyester-based thermoplastic elastomer were studied using the synchrotron X-ray scattering(SAXS) method. The structural changes occurring during heating period were investigated by determining the changes of the one-dimensional correlation function, interfacial thickness and Porod constant. Based on the abrupt increases of the domain spacing and interfacial thickness, a major structural change occurring well below the melting transition temperature is suggested. Those changes are explained in terms of melting of the thermodynamically unstable hard domains or/and the interdiffusion of the hard and soft segments in the interfacial regions. SAXS profile changes during the micro-phase separation process were also clearly observed at various temperatures and the separation rate was found to be sensitively affected by the temperature. The peak position of maximum scattering intensity stayed constant during the entire course of the phase separation process. The scattering data during the isothermal phase separation process was interpreted with the Cahn-Hilliard diffusion equation. The experimental data obtained during the early stage of the phase separation seems to satisfy the Cahn-Hilliard spinodal mechanism. The transition temperature obtained from the extrapolation of the diffusion coefficient to zero value turned out to be about 147$\pm$$2^{\circ}$, which is close to the order-disorder transition temperature obtained from the Porod analysis. The transition temperature was also estimated from the inveriant growth rate. By extrapolating the inveriant growth rate to zero, a transition temperature of about 145$\pm$$\pm$$2^{\circ}$ was obtained.

  • PDF

Investigation of 180W separation by transient single withdrawal cascade using Salp Swarm optimization algorithm

  • Morteza Imani;Mahdi Aghaie
    • Nuclear Engineering and Technology
    • /
    • v.55 no.4
    • /
    • pp.1225-1232
    • /
    • 2023
  • The 180W is the lightest isotope of Tungsten with small abundance ratio. It is slightly radioactive (α decay), with an extremely long half-life. Its separation is possible by non-conventional single withdrawal cascades. The 180W is used in radioisotopes production and study of metals through gamma-ray spectroscopy. In this paper, single withdrawal cascade model is developed to evaluate multicomponent separation in non-conventional transient cascades, and available experimental results are used for validation. Numerical studies for separation of 180W in a transient single withdrawal cascade are performed. Parameters affecting the separation and equilibrium time of cascade such as number of stages, cascade arrangements, feed location and flow rate for a fixed number of gas centrifuges (GC) are investigated. The Salp Swarm Algorithm (SSA) as a bio-inspired optimization algorithm is applied as a novel method to minimize the feed consumption to obtain desired concentration in the collection tank. Examining different cascade arrangements, it is observed in arrangements with more stages, the separation is further efficient. Based on the obtained results, with increasing feed flow rate, for fixed product concentration, the cascade equilibrium time decreases. Also, it is shown while the feed location is the farthest stage from the collection tank, the separation and cascade equilibrium time are well-organized. Finally, using SSA optimal parameters of the cascade is calculated, and optimal arrangement to produce 5 gr of 180W with 90% concentration in the tank, is proposed.

Separation of micro-plastics from sea water using electromagnetic archimedes force

  • N. Nomura;F. Mishima;S. Nishijima
    • Progress in Superconductivity and Cryogenics
    • /
    • v.25 no.3
    • /
    • pp.18-21
    • /
    • 2023
  • Pollution of the environment by micro-plastics is now a worldwide problem. Plastics are difficult to decompose and put a great load on the marine environment. Especially a plastic with a size of 5 mm or less is defined as micro-plastic and are carried by ocean currents over long distances, causing global pollution. These are not easily decomposed in the natural environment. In this paper, we aimed to experimentally demonstrate that micro-plastics in seawater can be continuously separated by electromagnetic Archimedes force. Using polyethylene particles of 3 mm in diameter as the separation target, a flow channel was fabricated and separation conditions were investigated by particle trajectory calculations for separation experiments. Based on the calculation results, a solenoid-type superconducting magnet was used as a source of magnetic field to conduct separation experiments of micro-plastics in seawater. Although a high separation rate was assumed in the simulation results, the experimental results did not show any significant improvement in the separation rate due to the electromagnetic Archimedes force. It was found that the gas generated by the electrolytic reaction may have inhibited the migration of the particles.

Operation Characteristics of the SBR Process with Electro-Flotation (EF) as Solids-liquid Separation Method (전해부상을 고액분리 방법으로 적용한 SBR 공정의 운전 특성)

  • Park, Minjeong;Choi, Younggyun
    • Journal of Korean Society on Water Environment
    • /
    • v.24 no.3
    • /
    • pp.340-344
    • /
    • 2008
  • Electro-flotation (EF) was applied to a sequencing batch reactor process (SBR) in order to enhance solids-liquid separation. Solids-liquid separation was good enough in the SBR coupled with EF (EF-SBR) and it was possible to maintain the concentration of mixed liquor suspended solids (MLSS) high in the EF-SBR. Under moderate organic loading condition (COD loading rate: 6 g/day), control SBR (C-SBR) showed similar treatment efficiencies with the EF-SBR. Under high organic loading condition (COD loading rate: 9.6 g/day), the solids-liquid separation in the C-SBR was deteriorated due to proliferation of filamentous bulking organisms at high F/M ratio. However, the EF-SBR was operated stably and with the high MLSS concentration (above 4,000 mg/L) regardless of the organic loading conditions during overall operating period leading to the satisfactory effluent quality. Gas production rate of the electrodes was gradually decreased because of anodic corrosion and scale build-up at the surface of cathode. However it could be partially overcome by use of corrosion-proof electrode material (SUS-316 L) and by periodic current switching between the electrodes.

An Experimental Study on the Characteristics of Temperature Separation for the Formal Change of Counterflow Type Vortex Tube (대향류형 보텍스 튜브에서의 형상 변화에 따른 온도 분리에 관한 실험적 연구(I))

  • 황승식;전운학;김종철;이희상
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.9 no.1
    • /
    • pp.84-93
    • /
    • 2001
  • The aim of this study is to provide fundamental informations that make it possible to use a cool stream and a hot stream simultaneously. We changed the pressure of compressed air that flows into a tube, the inner diameter of orifice that a cold stream exits, and the mass flow rate ratio. And in each case, we measured the temperature of a cold stream and a hot stream in each exit of a tube. Also we measured the axial temperature distribution and the radial temperature distribution in internal space of a tube. From the study, following conclusive remarks can be made. Average flow rate that flows into a tube is in proportion to square root of inlet pressure. As inlet pressure increases axial and radial temperature distribution in the inner space of vortex-tube increase. As mass flow rate ratio change, separation point moves.

  • PDF

Evaluation and modelling of the separation of anthracite in the hindered-settling column

  • Kim, Jeong-Yun;Cho, Hee-Chan
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2003.11a
    • /
    • pp.611-617
    • /
    • 2003
  • This study was performed to develop the method for producing industrial coal sources by cleaning Korean anthracite. Laboratory hindered-settling separation column was set and three coal samples were used for tests. Tests were conducted to evaluate the effects of the major operating variables, teeter water flow rate and relative column pressure (set point). Additional tests were performed to elevate the yield and properties of the products using air bubble injecting process. In results, nice products were obtained with high teeter water flow rate and air bubble injection. Also, model of continuous hindered-settling separation process was established to assist the evaluation of the equipment and several operating variables, such as dispersion, teeter water flow rate, feeding rate, etc.

  • PDF

Effects of the partial admission rate and cold flow inlet-outlet ratio on energy separation of Vortex Tube (Vortex Tube의 부분유입율과 저온 입.출구비가 에너지분리 특성에 미치는 영향)

  • 김정수;추홍록;상희선
    • Journal of the Korean Society of Safety
    • /
    • v.13 no.3
    • /
    • pp.51-59
    • /
    • 1998
  • The vortex tube is a simple device for separating a compressed fluid stream into two flows of high and low temperature without any chemical reactions. Recently, vortex tube is widely used to local cooler of industrial equipments and air conditioner for special purpose. The phenomena of energy separation through the vortex tube were investigated to see the effects of cold flow inlet-outlet ratios and partial admission rates on the energy separation experimentally. The experiment was carried out with various cold flow inlet-outlet ratios from 0.28 to 10.56 and partial admission rates from 0.176 to 0.956 by varying input pressure and cold air flow ratio. To find best use in a given cold flow inlet-outlet ratio and partial admission rate, the maximum temperature difference of cold air was presented. The experimental results were indicated that there are an optimum range of cold flow inlet-outlet ratio for each partial admission rate and available partial admission rate.

  • PDF