• Title/Summary/Keyword: Separation of Sn

Search Result 49, Processing Time 0.025 seconds

Highly Selective Transport of Ag+Ion through a Liquid Membrane Containing 2-Mercaptobenzothiazole as a Carrier

  • Akhond, Morteza;Tashkhourian, Javad
    • Bulletin of the Korean Chemical Society
    • /
    • v.24 no.4
    • /
    • pp.489-493
    • /
    • 2003
  • 2-Mercaptobenzothiazole was used as a highly selective and efficient carrier for the uphill transport of silver ion through a chloroform bulk liquid membrane. In the presence of thiosulfate ion as a suitable metal ion acceptor in the receiving phase, the amount of silver transported across the liquid membrane after 180 min was 90 ± 3.0%. The selectivity and efficiency of silver ion transported from aqueous solutions containing equimolar mixtures of $Zn^{2+}, Cu^{2+}, Co^{2+}, Ni^{2+}, Cd^{2+}, Pb^{2+}, Bi^{3+}, Fe^{2+}, Fe^{3+}, Pd^{2+}, Mn^{2+}, Hg^{2+}, Sn^{2+}, Ca^{2+}, Mg^{2+}, K^+, Na^+ and Li^+$ were investigated.

Spectrophotometric Determination of Copper After Selective Extraction with $\alpha$-(2-Benzimidazolyl)-$\alpha ^{\prime}, \alpha ^{\prime} ^{\prime}$-(N-5-nitro-2-pyridyl hydrazone)-toluene in the Presence of Brij 58

  • 박찬일;김현수;차기원
    • Bulletin of the Korean Chemical Society
    • /
    • v.20 no.3
    • /
    • pp.352-354
    • /
    • 1999
  • The spectrophotometric determination of Cu(Ⅱ) with α-(2-benzimidazolyl)-α',α"-(N-5-nitro-2-pyridylhydrazone)-toluene has been investigated. The optimum conditions of pH, stability, concentration of ligand and surfactant were evaluated. This method is a simple and sensitive method for determination of Cu(Ⅱ) and offers a selective separation of Cu(Ⅱ) from sample solution containin- I ppm below amount of Ni(Ⅱ), Co(Ⅱ), Zn(Ⅱ) and Sn(Ⅱ). Copper was determined by measuring the absorbance of Cu(Ⅱ)-BINPHT complex extracted with benzene in Brij 58 surfactant at 410 nm. Beer's law is obeyed over the concentration range 0∼2.5 μgmL-1 and the detection limit (S/N=2) is 0.06 μgmL-1. The relative standard deviation at the 0.3 μgmL-1 is 2.4% (N=7). The method was applied for the determination of Cu(Ⅱ) in various milks.

Molecular Theory of Superplastic Deformation (초소성변형의 분자론)

  • Chang Hong Kim;Taikyue Lee
    • Journal of the Korean Chemical Society
    • /
    • v.23 no.4
    • /
    • pp.217-236
    • /
    • 1979
  • The author's theory for plastic deformation was applied to superplastic alloys (Zn-Al eutectoid, Al-Cu, Pb-Sn, Sn-Bi, Mg-Al eutectics). The plastic deformation of the superplastic alloys could be described by two Maxwell models connected in parallel which represent two grain boundary flow units. The flow units are characterized by the two parameters $X_{gj}/{\alpha}_{gj}\;and\;{\beta}_{gj}$ (j=l or 2, g signifies the grain boundary) the values of which were obtained by applying our flow equation [Eq. (5)] to experiment. We confirmed that our flow equation describes the superplasticity very well. The curve of strain rate sensitivity m (=${\partial}\;In\;f/{\partial}\;In\;\dot{s})\;vs.\;-In\dot{s}$, where f and s are stress and strain rate, respectively, showed two peaks corresponding to flow unit gl and g2, the separation of the two peaks is determined by the difference between ${\beta}_{g1}\;and\;{\beta}_{g2}$. The condition of superplasticity is also determined by ${\beta}_{gj}$, which satisfies $\dot{s}_{mj}{\leqslant}1.53}{\beta}_{gj}$ [Eq.(13)], where $\dot{s}_{mj}$ is the s of the jth unit at the peak. The grain size dependence of ${\beta}_{gj}$ is described by $ln({\beta}_{gj})^{-1}$=alnx+b [Eq. (16)], where x is the grain size, and a and b are constants. The activation enthalpy for each flow unit, ${\Delta}H_{gj}^{\neq}$ was also determined from the temperature dependence of ${\beta}_{gj}$ which is proportional to the relaxation time of the j th unit. Since the superplasticity is determined by Eq. (13), and since ${\beta}_{gj}$ and ${\Delta}H_{gj}^{\neq}$ are related, we obtained the conclusion that superplasticity occurs in the system having small ${\Delta}H_{gj}^{\neq}$ values. The Aej values were equal to the activation enthalpies of grain boundary self-diffusion of the component atoms of the alloys, this accords with our proposed flow mechanism. The ${\Delta}H_{gj}^{\neq}$ value increases with grain size as expected from Eq. (16).

  • PDF

Synthesis of $(\pm)-\alpha-Hydroxy-\alpha$-(p-Chlorobiphenyl)Acetic Acid and its Resolution ($(\pm)-\alpha-Hydroxy-\alpha$-(p-Chlorobiphenyl)acetic acid 합성과 분할)

  • 권순경
    • YAKHAK HOEJI
    • /
    • v.39 no.4
    • /
    • pp.433-437
    • /
    • 1995
  • Optically pure(-)-and (+)-$\alpha$-hydroxy-$\alpha$-(p-chlorobiphenyl)acetic acids were prepared. The racemate was synthesized through three steps. By condensation of p-cnorobiphenyl with diethyl ketomalonate in the presence of SnCl$_{4}$, diethyl $\alpha$-hydroxy-$\alpha$-(p-chlorobiphenyl)malonate (1) was formed and subsequently ($\pm$)-$\alpha$-hydroxy-$\alpha$-(p-chlorobiphenyl)acetic acid (3) was obtained through hydrolysis and decarboxylation. For the separation of the racemate the classical resolution method, derivatization of a racemate by reaction with an optically pure compound was employed. In this case the optically pure compound were [R]-(+)-$\alpha$-methylbenzylamine and [S]-(-)-$\alpha$-methylbenzylamine. Diastereomeric salts between acids and bases could be easily separated by crystallization in absolute ethanol.

  • PDF

Determination of Dibutyltin in Sediments Using Isotope Dilution Liquid Chromatography-Inductively Coupled Plasma Mass Spectrometry

  • Yim, Yong-Hyeon;Park, Ji-Youn;Han, Myung-Sub;Park, Mi-Kyung;Kim, Byung-Joo;Lim, Young-Ran;Hwang, Eui-Jin;So, Hun-Young
    • Bulletin of the Korean Chemical Society
    • /
    • v.26 no.3
    • /
    • pp.440-446
    • /
    • 2005
  • A method is described for the determination of dibutyltin (DBT) in sediment by isotope dilution using liquid chromatography inductively-coupled plasma/mass spectrometry (LC-ICP/MS). To achieve the highest accuracy and precision, special attentions are paid in optimization and evaluation of overall processes of the analysis including extraction of analytes, characterization of the standards used for calibration and LC-ICP/MS conditions. An approach for characterization of natural abundance DBT standard has been developed by combining inductively-coupled plasma/optical emission spectrometry (ICP/OES) and LC-ICP/MS for the total Sn assay and the analysis of Sn species present as impurities, respectively. An excellent LC condition for separation of organotin species was found, which is suitable for simultaneous DBT and tributyltin (TBT) analysis as well as impurity analysis of DBT standards. Microwave extraction condition was also optimized for high efficiency while preventing species transformation. The present method determines the amount contents of DBT in sediments with expanded uncertainty of less than 5% and its result shows high degree of equivalence with reference values of an international inter-comparison and a certified reference material (CRM) within stated uncertainties.

Optical Resolution of Dabsyl Amino Acids in Reversed-Phase Liquid Chromatography

  • Lee, Sun-Haing;Oh, Tae-Sub;Lee, Young-Cheal
    • Bulletin of the Korean Chemical Society
    • /
    • v.11 no.5
    • /
    • pp.411-415
    • /
    • 1990
  • The dabsylation of amino acids has been applied to resolve their optical isomers with the use of chiral mobile phase in high performance liquid chromatography. The dabsyl amino acids were successfully separated on reversed phase column($C_{18}$) by adding a chiral L-benzylproline-Cu(II) chelate to the mobile phase. The separation selectivity of the dabsyl amino acid enantiomers was not less than that of dansyl amino acids. The retention order of the dabsyl amino acid enantiomers was as those of the dansyl amino acid enantiomers except dabsyl threonine. The optical selectivity of the dabsyl amino acids increase with pH of the mobile phase and concentration of the chelate, but slightly decreases with concentration of buffer and organic solvent composition. However serine, methionine, valine, and leucine showed a slight decrease in the optical selectivity with increase in pH. The retention times of the dabsyl amino acids decreases with increasing pH and acetonitrile concentration but increases with the concentration of the chiral chelate added. The mechanism of the optical resolution is based on a stereospecific interaction including a intramolecular hydrophobic effect and SN-2 reactivity of the ligand exchange chromatography.It is advantageous to detect absorption at 436 nm, which is less interferent them the other detection systems. The derivatized dabsyl amino acids are stable for a month.

Room Temperature Hydrogen Sensor

  • Cho, Hyoung Jin;Zhang, Peng;Seal, Sudipta
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.51.3-51.3
    • /
    • 2010
  • Due to the recent public awareness of global warming and sustainable economic growth, there has been a growing interest in alternative clean energy sources. Hydrogen is considered as a clean fuel for the next generation. One of the technical challenges related to the use of hydrogen is safe monitoring of the hydrogen leak during separation, purification and transportation. For detecting various gases, chemiresistor-type gas sensors have been widely studied and used due to their well-established detection scheme and low cost. However, it is known that many of them have the limited sensitivity and slow response time, when used at low temperature conditions. In our work, a sensor based on Schottky barriers at the electrode/sensing material interface showed promising results that can be utilized for developing fast and highly sensitive gas sensors. Our hydrogen sensor was designed and fabricated based on indium oxide (In2O3)-doped tin oxide (SnO2) semiconductor nanoparticles with platinum (Pt) nanoclusters in combination with interdigitated electrodes. The sensor showed the sensitivity as high as $10^7%$ (Rair/Rgas) and the detection limit as low as 30 ppm. The sensor characteristics could be obtained via optimized materials synthesis route and sensor electrode design. Not only the contribution of electrical resistance from the film itself but also the interfacial effect was identified as an important factor that contribute significantly to the overall sensor characteristics. This promises the applicability of the developed sensor for monitoring hydrogen leak at room temperature.

  • PDF

A Study of material analysis and its experimentation of metamorphosis and its utilities in Copper Alloy plates for contemporary metal craft (현대금속공예용 동합금판의 재료분석과 형질변환 실험 및 응용에 관한 연구)

  • Lim, Ock-Soo
    • Archives of design research
    • /
    • v.17 no.4
    • /
    • pp.241-250
    • /
    • 2004
  • In this research, the copper alloy plates C2200, C5210, C7701, C8113 were selected to make datum and to identify further usage of metal craft experimentation. For its experimentation, the general welding and TIG welding methods were researched; for 2nd experimentation, the Reticulation and Electroforming skill's differences in color and temperature were researched. With these methods 3 different kinds of works are introduced for sample studies. For this research, Dr. Lee, Dong-Woo who works in Poongsan Metal Co, supported 4 kinds of copper alloy metals. Which are Commercial bronze (Cu-Zn), Deoxidiged Copper(Cu-Sn-P), Nickel Silver (Cu-Ni-Zn), and White Bronze (Cu-Ni); they were applied partly and wholly by the method of Laminatin, Reticulation, Fusing, and Electroforming skills. In case of C2200, the brass, the A. C. TIG welding method is better under 2mm slight plate; the D.C. TIG welding is better upper 2mm plate; and 250~300$^{\circ}C$ is recommended for remain heat treatment. In case of C5210, not having Hydrogen in high temperature return period, doesn't need Oxygen in high temperature and hardening in comparative high temperature neither, it is good for welding. It contains Sn 2-9% ad P 0.03-0.4% generally; and in accordance with the growth rate of Sn contain amount, the harden temperature boundary become broad. In case of cold moment after welding, they are recommended that higher speed TIG welding, smaller melting site and less than 200$^{\circ}C$ for pre-heating temperature. In case of C7701, the 10-20% Ni, 15-30% Zn are widely used.. If it is upper 30% Zn, it become (${\alpha}+{\beta}$) system and adhesive power rate become lower, and the productivity become lower in low temperature but the productivity become higher in high temperature. Nickel Silver's resistance of electricity is well; and the heatproof and incorrodibility is good, too. Lastly, in case of C8113, good at persistence in salty and grind; high in strength of high temperature. In case of white brass, contain 10-30% Nickel and hardened in high temperature and become single phrase. For these reason, the crystallization particles easily become large, if the resistance become higher small amount of Pb, P, S separation rate become higher.

  • PDF

Nanolayered CuWO4 Decoration on Fluorine-Doped SnO2 Inverse Opals for Solar Water Oxidation

  • Cho, Ha Eun;Yun, Gun;Arunachalam, Maheswari;Ahn, Kwang-Soon;Kim, Chung Soo;Lim, Dong-Ha;Kang, Soon Hyung
    • Journal of Electrochemical Science and Technology
    • /
    • v.9 no.4
    • /
    • pp.282-291
    • /
    • 2018
  • The pristine fluorine-doped $SnO_2$ (abbreviated as FTO) inverse opal (IO) was developed using a 410 nm polystyrene bead template. The nanolayered copper tungsten oxide ($CuWO_4$) was decorated on the FTO IO film using a facile electrochemical deposition, subsequently followed by annealing at $500^{\circ}C$ for 90 min. The morphologies, crystalline structure, optical properties and photoelectrochemical characteristics of the FTO and $CuWO_4$-decorated FTO (briefly denoted as $FTO/CuWO_4$) IO film were investigated by field emission scanning electron microscopy, X-ray diffraction, UV-vis spectroscopy and electrochemical impedance spectroscopy, showing FTO IO in the hexagonally closed-pack arrangement with a pore diameter and wall thickness of about 300 nm and 20 nm, respectively. Above this film, the $CuWO_4$ was electrodeposited by controlling the cycling number in cyclic voltammetry, suggesting that the $CuWO_4$ formed during 4 cycles (abbreviated as $CuWO_4$(4 cycles)) on FTO IO film exhibited partial distribution of $CuWO_4$ nanoparticles. Additional distribution of $CuWO_4$ nanoparticles was observed in the case of $FTO/CuWO_4$(8 cycles) IO film. The $CuWO_4$ layer exhibits triclinic structure with an indirect band gap of approximately 2.5 eV and shows the enhanced visible light absorption. The photoelectrochemical (PEC) behavior was evaluated in the 0.5 M $Na_2SO_4$ solution under solar illumination, suggesting that the $FTO/CuWO_4$(4 cycles) IO films exhibit a photocurrent density ($J_{sc}$) of $0.42mA/cm^2$ at 1.23 V vs. reversible hydrogen electrode (RHE, denoted as $V_{RHE}$), while the FTO IO and $FTO/CuWO_4$(8 cycles) IO films exhibited a $J_{sc}$ of 0.14 and $0.24mA/cm^2$ at $1.23V_{RHE}$, respectively. This difference can be explained by the increased visible light absorption by the $CuWO_4$ layer and the favorable charge separation/transfer event in the cascading band alignment between FTO and $CuWO_4$ layer, enhancing the overall PEC performance.

Study on the Positional Distribution of Fatty Acids, and Triacylglycerol Separation, of Seed Oils (종실유(seeds oil)의 위치별 지방산 및 트리아실글리세롤의 조성 연구)

  • Moon, Jun-Hee;Hwang, Yun-Ik;Lee, Ki-Teak
    • Food Science and Preservation
    • /
    • v.16 no.5
    • /
    • pp.726-733
    • /
    • 2009
  • Six types of oil were extracted from pomegranate seed, mung bean, pepper seed, safflower seed, seeds of Cassia tora Linnaeus, and perilla seed. The extracted seed oils were analyzed for total and positional fatty acid composition, triacylglycerol (TAG) level, and tocopherol content. Crude fat levels measured by the Folch method were 21.64% in perilla seed, 13.85% in safflower seed, 9.60% in pepper seed, 8.85% in pomegranate seed, 2.25% in mung bean, and 2.00% in C. tora,respectively (all w/w). Linoleic acid (C18:2) was the most abundant fatty acid at the sn-2 position of triacylglycerols (TAGs), ranging from 15.99-88.3 wt%. The composition of TAGs was analyzed by reverse-phase HPLC, and TAGs of seed oils showed partition numbers of 36-48. The highest content (377.74 mg/100 g) of total tocopherol was found in pomegranate seed whereas the total tocopherol content of mung bean, C. tora, pepper seed, perilla seed, and safflower seed were 141.16, 107.23, 33.88, 30.05, and 29.80 mg/100 g, respectively.