DOI QR코드

DOI QR Code

Highly Selective Transport of Ag+Ion through a Liquid Membrane Containing 2-Mercaptobenzothiazole as a Carrier

  • Published : 2003.04.20

Abstract

2-Mercaptobenzothiazole was used as a highly selective and efficient carrier for the uphill transport of silver ion through a chloroform bulk liquid membrane. In the presence of thiosulfate ion as a suitable metal ion acceptor in the receiving phase, the amount of silver transported across the liquid membrane after 180 min was 90 ± 3.0%. The selectivity and efficiency of silver ion transported from aqueous solutions containing equimolar mixtures of $Zn^{2+}, Cu^{2+}, Co^{2+}, Ni^{2+}, Cd^{2+}, Pb^{2+}, Bi^{3+}, Fe^{2+}, Fe^{3+}, Pd^{2+}, Mn^{2+}, Hg^{2+}, Sn^{2+}, Ca^{2+}, Mg^{2+}, K^+, Na^+ and Li^+$ were investigated.

Keywords

References

  1. Morf, W. F.; Ammang, D.; Bissig, R.; Pretsch, E.; Simon, W. Progress in Macrocyclic Chemistry; Izatt, R. M.; Christensen, J. J., Eds.; Interscience: New York, 1979; Vol. 1, pp 1-61.
  2. Mc Bride, D. W.; Izatt, R. M.; Lamb, J. D.; Christensen, J. J. Inclusion Compounds; Atwood, J. L.; Davies, J. F. D.; MacNicol, D. D., Eds.; Academic press: Orlando, FL., 1984; Vol. 3, pp 571-628.
  3. Marr, R.; Kopp, A. Int. Chem. Eng. 1982, 22, 44.
  4. Ishikawa, J.; Sakamoto, H.; Otomo, M. Analyst 1997, 122, 1383. https://doi.org/10.1039/a704135g
  5. Guyon, F.; Parthasarathy, N.; Buffle, J. Anal. Chem. 1999, 71, 819. https://doi.org/10.1021/ac9804947
  6. El Aamran, F. Z.; Kumar, A.; Beyer, L.; Florido, A.; Sastre, A. M. J. Membr. Sci. 1999, 152, 263. https://doi.org/10.1016/S0376-7388(98)00241-5
  7. Safavi, A.; Shams, E. Talanta 1999, 48, 1167. https://doi.org/10.1016/S0039-9140(98)00344-0
  8. Goering, R. M.; Bowman, C. N.; Koval, C. A.; Noble, R. D.; Ashley, M. E. J. Membr. Sci. 2000, 172, 49. https://doi.org/10.1016/S0376-7388(00)00319-7
  9. Safavi, A.; Rastegarzadeh, S. Talanta 1995, 42, 2039. https://doi.org/10.1016/0039-9140(95)01694-5
  10. Akhond, M.; Shamsipur, M. J. Chin. Chem. Soc. 1996, 43, 225.
  11. Akhond, M.; Shamsipur, M. J. Membr. Sci. 1996, 117, 221. https://doi.org/10.1016/0376-7388(96)00062-2
  12. Hiratani, K.; Takahashi, T.; Sughhara, H.; Kasuga, K.; Fujiwara, K.; Hayashi, T.; Bartsch, A. Anal. Chem. 1997, 69, 3002. https://doi.org/10.1021/ac9701593
  13. Akhond, M.; Shamsipur, M. Sep. Sci. Technol. 1997, 32(7), 1223. https://doi.org/10.1080/01496399708000957
  14. Akhond, M.; Shamsipur, M. Sep. Sci . Technol. 1995, 30, 3061. https://doi.org/10.1080/01496399508013128
  15. Akhond, M.; Shamsipur, M. Bull. Chem. Soc. Jpn. 1997, 70, 339. https://doi.org/10.1246/bcsj.70.339
  16. Audunsson, G. Anal. Chem. 1986, 58, 2714. https://doi.org/10.1021/ac00126a030
  17. Kuo, Y.; Gegor, H. P. Sep. Sci. Technol. 1983, 18, 421. https://doi.org/10.1080/01496398308060285
  18. Stehle, R. G.; Higuchi, W. I. J. Pharm. Sci. 1967, 56, 1367. https://doi.org/10.1002/jps.2600561040
  19. Behr, J.; Lehn, J. J. Am. Chem. Soc. 1973, 95, 6108. https://doi.org/10.1021/ja00799a044
  20. Mahmoud, M. E.; Gohar, G. A. Talanta 2000, 51, 77. https://doi.org/10.1016/S0039-9140(99)00249-0
  21. Kamata, S.; Murata, H.; Kubo, Y.; Bhale, A. Analyst 1989, 114, 1029. https://doi.org/10.1039/an9891401029
  22. Izatt, R. M.; Bradshaw, J. S.; Nielsen, S. A.; Lamb, J. D.; Christensen, J. J.; Sen, D. Chem. Rev. 1985, 85, 271. https://doi.org/10.1021/cr00068a003
  23. Izatt, R. M.; Pawlak, K.; Bradshaw, J. S.; Bruening, R. L. Chem. Rev. 1991, 91, 1721. https://doi.org/10.1021/cr00008a003
  24. Diamantatos, A. Anal. Chim. Acta 1973, 66, 147. https://doi.org/10.1016/S0003-2670(01)80213-0
  25. Diamantatos, A. Anal. Chim. Acta 1973, 67, 317. https://doi.org/10.1016/S0003-2670(01)80866-7
  26. Khan, M. R.; Khoo, S. B. Anal. Chem. 1996, 68, 3290. https://doi.org/10.1021/ac951098g
  27. Chwastowska, J.; Rogowoska, A.; Sterlinska, E.; Dudek, J. Talanta 1999, 49, 837. https://doi.org/10.1016/S0039-9140(99)00081-8
  28. Mazloum, M.; Amini, M. K.; Mohammadpoor-Baltork, I. Sensors and Actuators B 2000, 63, 80. https://doi.org/10.1016/S0925-4005(00)00300-2
  29. Izatt, R. M.; Lindh, G. C.; Bruening, R. L.; Bradshaw, J. S.; Lamb, J. D.; Christenses, J. J. Pure Appl. Chem. 1986, 11, 1453.
  30. Dadfarnia, S.; Shamsipur, M. Bull. Chem. Soc. Jpn. 1992, 65, 2779. https://doi.org/10.1246/bcsj.65.2779
  31. Dadfarnia, S.; Shamsipur, M. J. Mem. Sci. 1992, 75, 61. https://doi.org/10.1016/0376-7388(92)80006-6
  32. Lindoy, L. F.; Baldwin, D. S. Pure Appl. Chem. 1989, 61, 909. https://doi.org/10.1351/pac198961050909
  33. Izatt, R. M.; Clark, G. A.; Bradshaw, J. S.; Lamb, J. D.; Christensen, J. J. Sep. Purif. Methods 1986, 15, 21. https://doi.org/10.1080/03602548608068424
  34. Inokuma, S.; Uabusa, K.; Kuwamura, T. Chem. Lett. 1984, 607.

Cited by

  1. Constituents of Machilus thunbergii bark and inhibition of cyclin-dependent kinases (CDKs) by procyanidin B2 vol.54, pp.6, 2011, https://doi.org/10.1007/BF03253192
  2. Transport of silver ion through bulk liquid membrane using macrocyclic and acyclic ligands as carriers in organic solvents vol.60, pp.1-2, 2008, https://doi.org/10.1007/s10847-007-9355-7
  3. Carrier-mediated liquid membrane systems for lead (II) ion separations vol.74, pp.1, 2003, https://doi.org/10.1007/s11696-019-00868-w
  4. Tailoring the separation performance and antifouling property of polyethersulfone based NF membrane by incorporating hydrophilic CuO nanoparticles vol.37, pp.5, 2003, https://doi.org/10.1007/s11814-020-0497-2
  5. Selective Transport of Ag(I) through a Polymer Inclusion Membrane Containing a Calix[4]pyrrole Derivative from Nitrate Aqueous Solutions vol.21, pp.15, 2020, https://doi.org/10.3390/ijms21155348