• Title/Summary/Keyword: Separation condition

Search Result 866, Processing Time 0.028 seconds

Study for Flow Phenomenon in the Circulation Water Pump Chamber using the Flow-3D Model (Flow-3D 모형을 이용한 순환수취수펌프장 내 흐름현상 연구)

  • Ha, Sung-Won;Kim, Tae-Won;Choi, Joo-Hwan;Park, Young-Jin
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.4
    • /
    • pp.580-589
    • /
    • 2019
  • Indonesia has a very short supply of electricity. As a solution to this problem, plans for construction of thermal power plants are increasing. Thermal power plant require the cooling water system to cool the overheated engine and equipment that accompany power generation, and the circulation water pump chamber among the cooling water system are generally designed according to the ANSI (1998) standard. In this study, the design criterion $20^{\circ}$ for the spreading angle of the ANSI (1998) of the layout of the circulating water pump chamber can not be satisfied on the K-coal thermal power plant site condition in Indonesia. Therefore, 3-D numerical model experiment was carried out to obtain a hydraulically stable flow and stable structure. The Flow-3D model was used as numerical model. In order to examine the applicability of the Flow-3D model, the flow study results around the rectangular structure of Rodi (1997) and the numerical analysis results were compared around the rectangular structures. The longitudinal velocity distribution derived from numerical analysis show good agreement. In order to satisfy the design velocity in the circulating water pump chamber, a rectangular baffle favoring velocity reduction was applied. When the approach velocity into the circulating water pump chamber was occurred 1.5 m/s ~ 2.5 m/s, the angle of the separation flow on the baffle was occurred about $15^{\circ}{\sim}20^{\circ}$. By placing the baffle below the separation flow angle downstream, the design velocity of less than 0.5 m/s was satisfied at inlet bay.

Preparation of Pd/Al2O3, Pd/Ag/Al2O3 Membranes and Evaluation of Hydrogen Permeation Performance (Pd/Al2O3, Pd/Ag/Al2O3 분리막의 제조와 수소 투과 성능 평가)

  • Lee, Jeong In;Shin, Min Chang;Zhuang, Xuelong;Hwang, Jae Yeon;Kim, Eok yong;Jeong, Chang-Hun;Park, Jung Hoon
    • Membrane Journal
    • /
    • v.32 no.2
    • /
    • pp.116-125
    • /
    • 2022
  • In this experiment, an α-Al2O3 ceramic hollow fiber was used as a support, and a hydrogen membrane plated with Pd and Pd-Ag was manufactured through electroless plating. The Pd-Ag membrane was annealed at 500℃ for 10 h to form an alloy of Pd and Ag. It was confirmed that it became a Pd-Ag alloy through EDS (Energy Dispersive X-ray Spectroscopy) analysis. Also, the thickness of the Pd, Pd-Ag plating layer was measured to be about 8.98 and 9.29 ㎛ through SEM (Scanning Electron Microscope) analysis respectively. Hydrogen permeation experiment was performed using the H2 gas and mixed gas (H2 and N2) in the range of 350~450℃ and 1-4 bar using the prepared hydrogen membrane. Under the H2 gas condition, the Pd and Pd-Ag membrane has a flux of up to 21.85 and 13.76 mL/cm2·min and also separation factors of 1216 and 361 were obtained in the mixed gas at 450℃ and 4 bar conditions respectively.

Studies on the Separation and Preconcentration of Metal Ions by XAD-16-[4-(2-thiazolylazo)] orcinol Chelating Resin (XAD-16-[4-(2-thiazolylazo)]orcinol 킬레이트 수지에 의한 금속이온의 분리 및 농축에 관한 연구)

  • Lee, Won;Seol, Kyung-Mi;An, Hye-Sook;Lee, Chang-Heon;Lim, Jae-Hee
    • Analytical Science and Technology
    • /
    • v.10 no.4
    • /
    • pp.282-290
    • /
    • 1997
  • The sorption and desorption properties of U(VI), Th(IV), Zr(IV), Cu(II), Pb(II), Ni(II), Zn(II), Cd(II) and Mn(II) ions on XAD-16-[4-(2-thiazolylazo)orcinol] (TAO) chelating resin were studied by elution method. The effect was examined with respect to overall capacity of each metal ion, separation of mixed metal ions, flow rate and concentration of buffer solution for optimum condition of sorption. The overall capacities of some metal ions on this chelating resin were 0.35nmol U(VI)/g resin, 0.49nmol Th(IV)/g resin, 0.41nmol Cu(II)/g resin, and 0.31nmol Zr(IV)/g resin, respectively. The elution order of metal ions obtained from breakthrough capacity and overall capacity at pH 5.0 was Th(IV)>Cu(II)>U(VI)>Zr(IV)>Pb(II)>Ni(II)>Zn(II)>Mn(II)>Cd(II). The group separation of mixed metal ions was possible by increasing pH in pH range 2~5 at a flow rate of 0.28mL/min. Characteristics of desorption were investigated with desorption agents such as $HNO_3$, HCl, $HClO_4$, $H_2SO_4$, and $Na_2CO_3$. It was found that 2M $HNO_3$ showed high desorption efficiency to most of metal ions except Zr(IV) ion. Also, desorption and recovery of Zr(IV) ion were successfully performed with 1M $H_2SO_4$. Recovery of trace amount of U(VI) ion from artificial sea water was over 94%. The chelating resin, XAD-16-TAO was successfully applied to group separation of rare earth metal ions from U(VI) by using 2M $HNO_3$ as an eluent.

  • PDF

Recovery of $SF_6$ gas from Gaseous Mixture ($SF_6/N_2/O_2/CF_4$) through Polymeric Membranes (고분자 분리막을 이용한 혼합가스($SF_6/N_2/O_2/CF_4$)로부터 $SF_6$의 회수)

  • Lee, Hyun-Jung;Lee, Min-Woo;Lee, Hyun-Kyung;Choi, Ho-Sang;Lee, Sang-Hyup
    • Membrane Journal
    • /
    • v.21 no.1
    • /
    • pp.22-29
    • /
    • 2011
  • During the maintenance, repair and replacement process of circuit breaker, $SF_6$ reacted with input air in arc discharge, which led to the production of by-product gases (eg, $N_2$, $O_2$, $CF_4$, $SO_2$, $H_2O$, HF, $SOF_2$, $CuF_2$, $WO_3$). Among these various by-product gases, $N_2$, $O_2$, $CF_4$ is major component. Therefore, the effective separation process is necessary to recycle the $SF_6$ gas from the mixture gas containing $N_2$, $O_2$, $CF_4$. In this study, the membrane separation process was applied to recycle the $SF_6$ gas from the mixture gas containing $N_2$, $O_2$, $CF_4$. The concentration of $SF_6$ gas in gas produced from the electric power industry is over than 90 vol%. Therefore, we made the simulated gas containing $N_2$, $O_2$, $CF_4$, $SF_6$ which the concentration of $SF_6$ gas is minimum 90 vol%. From the results of membrane separation process of $SF_6$ gas from $N_2$, $O_2$, $CF_4$ $SF_6$ mixture gases, PSF membrane shown the highest recovery efficiency 92.7%, in $25^{\circ}C$ and 150 cc/min of retentate flow rate. On the other hand, PC membrane shown the highest recovery efficiency 74.8%, in $45^{\circ}C$ and 150 cc/min of retentate flow rate. Also, the highest rejection rate of $N_2$, $O_2$, $CF_4$ is 80, 74 and 58.9% seperately in the same operation condition of highest recovery efficiency. From the results, we supposed the membrane separation process as the effective $SF_6$ separation and recycle process from the mixture gas containing $N_2$, $O_2$, $CF_4$, $SF_6$.

Separation and Recovery of $SF_6$ Gas from $N_2/SF_6$ Gas Mixtures by using a Polymer Hollow Fiber Membranes (고분자 중공사 분리막을 이용한 $N_2/SF_6$ 혼합가스로부터 $SF_6$의 분리 및 회수)

  • Lee, Hyun-Jung;Lee, Min-Woo;Lee, Hyun-Kyung;Lee, Sang-Hyup
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.33 no.1
    • /
    • pp.47-53
    • /
    • 2011
  • $SF_6$ (Sulfur hexafluoride) possesses high GWP (Global Warming Potential) as sepcified by the IPCC (Intergonvernmental Panel of Climate Change). Recently, the recovery-separtion of $SF_6$ research area, including permeation properties studies using various membrane's materials and the practical operation of recovery-separtion using membrane of waste $SF_6$ gas is in the initial state. The separation efficiency of a single $SF_6$ and waste $SF_6$ mixture was evaluated using a PSF (polysulfone), PC (tetra-bromo polycarbonate) and PI (polyimide) hollow fiber membranes. According to the results of single gases permeation properties, PI membrane has the highest permselectivity of $N_2$ gas in $N_2/SF_6$ gas. Under the condition of P=0.5 MPa, the highest concentration of recovered $SF_6$ is 95.6 vol % in the separation experiment of $SF_6/N_2$ mixture gas by PC membrane. Under the operation pressure of P=0.3 MPa at a fixed retentate flow rate fixed of 150 cc/min, the maximum recovery efficiency of $SF_6$ is up to 97.8% by PSF membrane. From the results above, it is thought that the separation and recovery technique of $SF_6$ gas using membrane will be used as the representative eco-technology in the $SF_6$ gas treatment in the future.

The Numerical Simulation of a 8-Channel Optical Wavelength Division Multiplexer with Channel Spacing $\Delta\lambda$=0.8 nm

  • Kim, Sang-Duk;Ku, Dae-Sung;Yun, Jung-Hyun;Lee, Jae-Gyu;Kim, Jong-Bin
    • Proceedings of the IEEK Conference
    • /
    • 2002.07a
    • /
    • pp.1-4
    • /
    • 2002
  • The numerical alaysis of optical device, silicabased device, are presented. The purpose of this paper is to simulate and to design a 8-channel optical wavelength division multiplexer(OWDM) based on Mach-Zehnder Interferometer(MZI) with wavelength spacing between channels Δλ=0.8 nm at central wavelength λ=1.55 ${\mu}{\textrm}{m}$. In initial condition fur simulating, we assumed as follows. A channel waveguide is made from silica based P-doped SiO2 core layers in order to coupling with a fiber easily and its core dimension was 6 ${\mu}{\textrm}{m}$$\times$6 ${\mu}{\textrm}{m}$. The core and clad index of channel waveguide were 1.455 and 1.444, separately, at λ=1.55 ${\mu}{\textrm}{m}$. Where, the separation between channel waveguides in coupling region was 3 ${\mu}{\textrm}{m}$. As a result of analysis, a group mode index of channel waveguide was 1.4498370, was gained by Hermite-Gaussian Method(HGM). Also, the channel spacing was determined by the waveguide arm length difference and was Δλ=0.8 nm as like a proposed condition. The central wavelength of a designed-multiplexer was activated about wavelength λ=1.55 ${\mu}{\textrm}{m}$, and we certificated that it can be used to 8-channel optical wavelength division multiplexer/demultiplexer.

  • PDF

Studies on the Separation of Taste Components from Sea Tangle (Laminaria japonica) Extract by Cross Flow Ultrafiltration (한외여과에 의한 다시마 정미성분 분리에 대한 연구)

  • Lee, Ho-Bong;Lee, Seung-Ryeol;Chang, Young-Sang;Shin, Zae-Ik
    • Korean Journal of Food Science and Technology
    • /
    • v.24 no.3
    • /
    • pp.199-203
    • /
    • 1992
  • This study was aimed to optimize the required condition for recovering the low soluble taste component obtained from sea tangle extract using ultrafiltration, and to investigate effects of membrane type, temperature, transmembrane pressure and flow rate respectively. We also compared relationship between the profile of permeate flux and the recovery yield of taste component under the selected optimal condition using ultrafiltration and diafiltration. Hydrophobic GR 51 PP membrane kept higher average permeate flux than hydrophilic FS membrane, and average permeate flux also had increasing tendency in relation to rising flow rate but it showed limit value of 3.7 l/min. Average permeate flux decreased as transmembrane pressure increased but it showed little change with rising temperature. Investigation upon average permeate flux, total dissolved solid and recovery yield of taste components using ultrafiltration and diafiltration resulted in relatively higher recovery yield in ultrafiltration. Compared ultrafiltration and diafiltration, average permeate flux was lower in ultrafiltration.

  • PDF

Analytical Optimum of Ginsenosides according to the Gradient Elution of Mobile Phase in High Performance Liquid Chromatography (HPLC의 이동상 용매조건에 따른 인삼 Ginsenoside 분석)

  • Park, Ji-Yeong;Won, Jun-Yeon;Lee, Chung-Yeol
    • Korean Journal of Medicinal Crop Science
    • /
    • v.15 no.3
    • /
    • pp.215-219
    • /
    • 2007
  • This study was conducted to analyze not only for the quality guaranteed of red ginseng but also for the minor ginsenosides. Although several studies have reported to analyze ginseng saponins, those were focused to major saponins, including 6 to 7 ginsenosides. As increase of interest in medicinal effect of ginseng products, anasis of various ginsenosides in both red and white ginseng are strongly demanded. To perform optital condition of 12 ginsenoside analysis, We controlled HPLC conditions, such as the gradient elution of the mobile phase. We found the adequate separation method for 12 ginse-nosides. The optimum condition was as following : H$_2$O/CH$_3$CN ratios were 82/18, 70/30, 55/45 and 50/50, respectively. Sol-vent flow rate was 1.00 ma/min. Column temperature was kept to 35$^{\circ}$C. UV detector was set to 203 nm.

Flow Characteristics and Optimal Design for RDT Sparger (원자로배수탱크내 Sparger에 대한 유동특성 및 최적설계)

  • Kim, Kwang-Chu;Park, Man-Heung;Park, Kyoung-Suk;Lee, Jong-Won
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.23 no.11
    • /
    • pp.1390-1398
    • /
    • 1999
  • A numerical analysis for ROT sparger of PWR(Pressurized Water Reactor) is carried out. Computation is performed to investigate the flow characteristics as the change of design factor. As the result of this study, RDT sparger's flow resistance coefficient is K=3.53 at the present design condition if engineering mar&in is considered with 20%, and flow ratio into branch pipe is $Q_s/Q_i=0.41$. Velocity distribution at exit is not uniform because of separation in branch pipe. In the change of inlet flow rate and section area ratio of branch pipe for main pipe, flow resistance coefficient is increased as $Q_s/Q_i$ decreasing, but in the change of branch angle and outlet nozzle diameter of main pipe, flow resistance coefficient is decreased as $Q_s/Q_i$ decreasing. As the change rate of $Q_s/Q_i$ is the larger, the change rate of flow resistance coefficient is the larger. The change rate of pressure loss is the largest change as section area ratio changing. The optimal design condition of sparger is estimated as the outlet nozzle diameter ratio of main pipe is $D_s/D_i=0.333$, the section area ratio is $A_s/A_i=0.2$ and the branch angle is ${\alpha}=55^{\circ}$.

Investigation and Evaluation of Noise Level of the Busan Subway (부산 지하철 소음도 조사 및 평가)

  • Lee, Chang-Myung;Jung, Jin-Guk;Jung, Jin-Suk
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.33 no.4
    • /
    • pp.243-250
    • /
    • 2011
  • Noise levels of the three subway lines of Busan city have been investigated. Averaged cabin noise of the train has been measured during the train trip for each station. It has been measured with separation of day time (9:00~18:00) and night time (18:00~22:00) measurements but there was no big difference on the measured data. Repeating for the measured data has been confirmed with twice measurements in May and June 2010. Several noise effects to the subway noise levels of Busan are explained. Those are screen door effect, rail road surface condition, subway train type and curvature of railway. Among three subway lines of Busan city, the line 2 is relatively noisy and its reasons are studied. It has been shown that the screen door effect is 10 dB(A) and S shape of sharp curve contributes in high noise level.