• Title/Summary/Keyword: Separation condition

Search Result 866, Processing Time 0.042 seconds

Urban Road Extraction from Aerial Photo by Linking Method

  • Yang, Sung-Chul;Han, Dong-Yeo;Kim, Min-Suk;Kim, Yong-Il
    • Korean Journal of Geomatics
    • /
    • v.3 no.1
    • /
    • pp.67-72
    • /
    • 2003
  • We have seen rapid changes in road systems and networks in urban areas due to fast urbanization and increased traffic demands. As a result, many researchers have put greater importance on extraction, correction and updating of information about road systems. Also, by using the various data on road systems and its condition, we can manage our road more efficiently and economically. Furthermore, such information can be used as input for digital map and GIS analysis. In this research, we used a high resolution aerial photo of the roads in Seongnam area. First, we applied the top-hat filter to the area of interest so that the road markings could be extracted in an efficient manner. The lane separation lines were selected, considering the shape similarity between the selected lane separation line and reference data. Next, we extracted the roads in the urban area using the aforementioned road marking. Using this technique, we could easily extract roads in urban area in semi-automatic way.

  • PDF

Chemical cleaning effects on properties and separation efficiency of an RO membrane

  • Tu, Kha L.;Chivas, Allan R.;Nghiem, Long D.
    • Membrane and Water Treatment
    • /
    • v.6 no.2
    • /
    • pp.141-160
    • /
    • 2015
  • This study aims to investigate the impacts of chemical cleaning on the performance of a reverse osmosis membrane. Chemicals used for simulating membrane cleaning include a surfactant (sodium dodecyl sulfate, SDS), a chelating agent (ethylenediaminetetraacetic acid, EDTA), and two proprietary cleaning formulations namely MC3 and MC11. The impact of sequential exposure to multiple membrane cleaning solutions was also examined. Water permeability and the rejection of boron and sodium were investigated under various water fluxes, temperatures and feedwater pH. Changes in the membrane performance were systematically explained based on the changes in the charge density, hydrophobicity and chemical structure of the membrane surface. The experimental results show that membrane cleaning can significantly alter the hydrophobicity and water permeability of the membrane; however, its impacts on the rejections of boron and sodium are marginal. Although the presence of surfactant or chelating agent may cause decreases in the rejection, solution pH is the key factor responsible for the loss of membrane separation and changes in the surface properties. The impact of solution pH on the water permeability can be reversed by applying a subsequent cleaning with the opposite pH condition. Nevertheless, the impacts of solution pH on boron and sodium rejections are irreversible in most cases.

Concept Design of High Altitude Simulation Test Facility (고공환경모사 시험설비 구축을 위한 개념설계)

  • Kim, Sang-Heon;Kim, Yong-Wook;Lee, Jung-Ho;Yu, Byung-Il;Cho, Sang-Yeon;Oh, Seung-Hyub
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2006.11a
    • /
    • pp.75-81
    • /
    • 2006
  • The propulsion system of KSLV-I second stage is engine with high expansion ratio and its starting altitude is high. To verify the performance of engine before the launch in the ground, high altitude test facility to simulate its operating condition is necessary. This material is about the concept design of high altitude simulation test facility for second stage engine. And it will be the basis for the construction of test facility and the test of engine.

  • PDF

Hydrogen Generation Characteristics of SMART System with Inherent $CO_2/H_2$ Separation ($CO_2/H_2$ 원천분리 SMART 시스템의 수소생산특성)

  • Ryu, Ho-Jung
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.18 no.4
    • /
    • pp.382-390
    • /
    • 2007
  • To check the feasibility of SMART(Steam Methane Advanced Reforming Technology) system, an experimental investigation was performed. A fluidized bed reactor of diameter 0.052m was operated cyclically up to 10th cycle, alternating between reforming and regeneration conditions. FCR-4 catalyst was used as the reforming catalyst and calcined limestone(domestic, from Danyang) was used as the $CO_2$ absorbent. Hydrogen concentration of 98.2% on a dry basis was reached at $650^{\circ}C$ for the first cycle. This value is much higher than $H_2$ concentration of 73.6% in the reformer of conventional SMR (steam methane reforming) condition. The hydrogen concentration decreased because the $CO_2$ capture capacity decreased as the number of cycles increased. However, the average hydrogen concentration at 10th cycle was 82.5% and this value is also higher than that of SMR. Based on these results, we could conclude that the SMART system can replace SMR system to generate pure hydrogen without HTS (high tempeature shift), LTS (low temperature shift) and $CO_2$ separation process.

Effect of Reduced Frequency on the Flow Pattern of Pitch Oscillating Elliptic Airfoil (피치 진동하는 타원형 에어포일의 환산주파수가 날개 주위 유동패턴에 미치는 영향)

  • Lee, Ki-Young;Chung, Hyong-Seok;Sohn, Myong-Hwan
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.9 no.4
    • /
    • pp.128-136
    • /
    • 2006
  • The purpose of this paper is to examine the dynamic stall characteristics of an elliptic airfoil when subject to constant pitch motions. In this study, which was motivated by the pressing need for a greater understanding of the reduced frequency$({\kappa})$ effects on flow patterns of elliptic airfoil, the various reduced frequencies were considered. The result confirms that the reduced frequency has a profound effects on the flow patterns. The increase of ${\kappa}$ accelerate the separation bubble bursting process up to ${\kappa}=0.10$, then diminish with further increase in ${\kappa}$. Compared with static condition, the dynamic pitching airfoil delays stall angle approximate $4{\circ}{\sim}5{\circ}$ during pitch-up stroke for ${\kappa}=0.10$. Results from this qualitative analysis provided valuable insight Into the control of dynamics stall.

Analytic study on lead and cadmium in copper contained carbon materials (구리를 함유한 탄소소재의 납 및 카드뮴 분석에 관한 연구)

  • Choi, Zel-Ho
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.20 no.6
    • /
    • pp.307-313
    • /
    • 2010
  • Quantitative analytical condition for lead and cadmium in copper contained carbon materials using solvent extraction followed by inductively coupled plasma-atomic emission spectrometry was studied. Copper contained carbon samples were dissolved by nitric acid-perchloric acid digestion. Lead and cadmium were determined after separation with KCN masked copper by an dithizone-chloroform solvent extraction. Recovery efficiency of analyte elements was satisfactory, and most of matrix elements causing interference could be effectively eliminated by the separation. Lead and cadmium were quantitatively determined without influence of sample matrix, by applying it procedure to artifact sample.

해석적 방법을 이용한 Worst Hot 조건에서 질량변화의 여부에 따른 발사시 열해석

  • Kim, Hui-Kyung;Choi, Joon-Min;Hyun, Bum-Seok
    • Aerospace Engineering and Technology
    • /
    • v.3 no.2
    • /
    • pp.42-49
    • /
    • 2004
  • Analytical solutions are developed to predict temperature of a satellite box during launch stage under the assumption of worst hot condition. The considered time period is from fairing jettison to separation of satellite during launch stage. After fairing jettison, a box mounted on outer surface of satellite are exposed to space environments such as direct solar flux, Earth IR, Albedo, and free molecular heating. The thermal governing equation is simplified to 1st order ordinary differential equation such that analytic solutions are acquired after the box is assumed as a single lumped mass. The analytical solutions are also available for mass varying box. Finally, the practical application is performed for the case of STSAT-1 launch scenario.

  • PDF

Fiber Orientation of Short Fiber Reinforced Polymeric Composites Depending on Injection Mold Shape Variations (단섬유강화 고분자 복합재료에서 사출성형 형상금형 형상변화에 따른 섬유배향상태)

  • Kim, Hyuk;Han, Gil-Young;Lee, Dong-Gi
    • Proceedings of the KSME Conference
    • /
    • 2001.11a
    • /
    • pp.778-784
    • /
    • 2001
  • Injection molding is a very important industrial process for the manufacturing of plastics objects. During an injection molding process of composites, the fiber-matrix separation and fiber orientation are caused by the flow of molten polymer/fiber mixture. As a result, the product tends to be nonhomogeneous and anisotropic. Hence, it is very important to clarify the relations between separation orientation and injection molding conditions. So far, there is no research on the measurement of fiber orientation using image processing. In this study, the effects of fiber content ratio and molding condition on the fiber orientation-angle distributions are studied experimentally. Using the image processing method, the fiber orientation distribution of weld-line parts in injection-molded products is assessed. And the effects of fiber content and injection molding conditions on the fiber orientation functions are also discussed.

  • PDF

A Quantitative Separation Method of Structure and Air Borne Sound Power from the Enclosure (차음구조물의 방사음향파워로부터 고체 및 공기전파음향파워의 정량적인 분리법)

  • 김의간;강동림
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.16 no.5
    • /
    • pp.85-96
    • /
    • 1992
  • Engine enclosures are widely adopted to reduce the noise emission in various fields of application. The radiated noise, which is due to the vibration of enclosure's outer surface, is composed of two kinds of sound power with different path of propagation. One is the 'structure-borne sound power' which stems from the engine's vibratory force applied to the structure of enclosure through the mounting parts of engine etc., while the other is the 'air-borne sound power' which is originated by the sound power radiated from the engine surface to the inner space of enclosure that should excite the vibration of enclosure from inside. In order to get a most efficient engine enclosure is required a profound consideration upon the above structure-borne and air-borne noise, since the guiding principle of countermeasure for each noise is quite different. The controlling of input vibration and its isolation are major subject for the structure-borne sound power and the specifications of absorbing member and damping panels are the major interests for the air-borne sound power. Hence it seems very efficient to separate the total sound power into two categories with a great accuracy when one think of further reduction of engine noise from the exciting enclosure, however, its separating methods have not been made clear for many years. Then author proposes a new practical separation method of two propagation path's contribution to the total radiation sound power for the enclosure under the engine operating condition.

  • PDF

Capacity evaluation on the slitting device of the spent fuel rod (사용후핵연료봉 slitting 장치 성능 평가)

  • 정재후;윤지섭;김영환;진재현;김동기
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.1154-1157
    • /
    • 2003
  • The spent fuel slitting device is an equipment developed for the separation of the pellet and hull from the cutting fuel rod with length of 250 mm, and in order to feed UO$_2$ pellet. We have analyzed on the existing technologies for designing and producing of the slitting device in the first year(2001), based on these results, designed and produced the rod slitting device. It has effectively separated the pellet from the hull, but demanded the supplement separation work because of the mixing with pellet and hull in the vessel, and required the condition for the reducing time of the process. In the second year(2002), we have reduced the work time, performed the test and capacity evaluation with the improving device, based these results, and ensured the data demanded for designing of the spent fuel rod slitting device. We have compared with the DUPIC(Direct use of spent PWR fuel in CAND reactors) process, and developed the device for the purpose of reducing over 40 % in comparition with the DUPIC operation time(5 minutes). Based on these results, it will is effectively applied to available data for designing and producing of the hot test facility.

  • PDF