• Title/Summary/Keyword: Separation Model

Search Result 1,434, Processing Time 0.032 seconds

Pyroshock Prediction of the Satellite Launch Vehicle at the Payload Fairing Separation (인공위성 발사체 노즈페어링 분리 시 구조물의 충격량 예측)

  • Jeong, Ho-Kyeong;Youn, Se-Hyun;Park, Soon-Hong;Jang, Young-Soon;Lee, Yeoung-Moo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.05a
    • /
    • pp.250-253
    • /
    • 2005
  • This paper is investigates the separation shock of payload fairing. Separation test of subscale PLF using half separation device and half PLA is performed. Resulting shock loads at equipment bay and fairing joint are measured. Pyroshock estimation is performed using AUTOSEA Pyroshock Module. Input data to analysis model is obtained from the separation test results of subscale PLF. And model of AUTOSEA is updated comparing results between tests and analysis.. This enables us to validate the AUTOSEA model. Tuned model of subscale PLF and separation device is used to update full scale model, and the shock analysis result of full scale model is estimated in this paper. This paper also discusses the results regarding the difficulty of structural modeling and its numerical implementation in AutoSEA2 Software.

  • PDF

A Study on Separation Distance between Industrial Source and Residential Areas to Avoid Odor Annoyance Using AUSPLUME Model (AUSPLUME 모델을 이용한 악취를 피하기 위한 산업오염원과 주거단지 사이 이격거리에 관한 연구)

  • 정상진
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.18 no.5
    • /
    • pp.393-400
    • /
    • 2002
  • Separation distance between industrial source and residential areas to avoid odor annoyance was investigated using AUSPLUME model. A Gaussian plume model (AUSPLUME) for the dispersion was used to calculate odor emission from ground level area source. Using the dispersion model to calculate ambient odor concentrations, the separation distance between industrial source and residental areas was defined by %HA (percentage of highly annoyed person) and odor percentile concentration (C98). The result was compared with the separation distance of various nation guidelines for livestock buildings. The calculated separation distance for industrial source showed similar pattern comparing with various guidelines for livestock buildings.

NUCLIDE SEPARATION MODELING THROUGH REVERSE OSMOSIS MEMBRANES IN RADIOACTIVE LIQUID WASTE

  • LEE, BYUNG-SIK
    • Nuclear Engineering and Technology
    • /
    • v.47 no.7
    • /
    • pp.859-866
    • /
    • 2015
  • The aim of this work is to investigate the transport mechanism of radioactive nuclides through the reverse osmosis (RO) membrane and to estimate its effectiveness for nuclide separation from radioactive liquid waste. An analytical model is developed to simulate the RO separation, and a series of experiments are set up to confirm its estimated separation behavior. The model is based on the extended Nernst-Plank equation, which handles the convective flux, diffusive flux, and electromigration flux under electroneutrality and zero electric current conditions. The distribution coefficient which arises due to ion interactions with the membrane material and the electric potential jump at the membrane interface are included as boundary conditions in solving the equation. A high Peclet approximation is adopted to simplify the calculation, but the effect of concentration polarization is included for a more accurate prediction of separation. Cobalt and cesium are specifically selected for the experiments in order to check the separation mechanism from liquid waste composed of various radioactive nuclides and nonradioactive substances, and the results are compared with the estimated cobalt and cesium rejections of the RO membrane using the model. Experimental and calculated results are shown to be in excellent agreement. The proposed model will be very useful for the prediction of separation behavior of various radioactive nuclides by the RO membrane.

Mathematical Modelling and Simulation of CO2 Removal from Natural Gas Using Hollow Fibre Membrane Modules

  • Gu, Boram
    • Korean Chemical Engineering Research
    • /
    • v.60 no.1
    • /
    • pp.51-61
    • /
    • 2022
  • Gas separation via hollow fibre membrane modules (HFMM) is deemed to be a promising technology for natural gas sweetening, particularly for lowering the level of carbon dioxide (CO2) in natural gas, which can cause various problems during transportation and process operation. Separation performance via HFMM is affected by membrane properties, module specifications and operating conditions. In this study, a mathematical model for HFMM is developed, which can be used to assess the effects of the aforementioned variables on separation performance. Appropriate boundary conditions are imposed to resolve steady-state values of permeate variables and incorporated in the model equations via an iterative numerical procedure. The developed model is proven to be reliable via model validation against experimental data in the literature. Also, the model is capable of capturing axial variations of process variables as well as predicting key performance indicators. It can be extended to simulate a large-scale plant and identify an optimal process design and operating conditions for improved separation efficiency and reduced cost.

Classification of Contradiction Relations and their Solving Dimensions based on the Butterfly Model for Contradiction Solving for Physical Contradiction of TRIZ (트리즈의 물리적 모순에 대한 모순해결 나비모형의 모순관계와 해결차원 분류)

  • Hyun, Jung Suk;Park, Chan Jung
    • Knowledge Management Research
    • /
    • v.15 no.4
    • /
    • pp.15-34
    • /
    • 2014
  • Creative problem solving has become an important issue in many fields. Among problems, dilemma need creative solutions. New creative and innovative problem solving strategies are required to handle the contradiction relations of the dilemma problems because most creative and innovative cases solved contradictions inherent in the dilemmas. Among various kinds of problem solving theories, TRIZ provides the concept of physical contradiction as a common problem solving principle in inventions and patents. In TRIZ, 4 separation principles solve the physical contradictions of given problems. The 4 separation principles are separation in time, separation in space, separation within a whole and its parts, and separation upon conditions. Despite this attention, an accurate definitions of the separation principles of TRIZ is missing from the literature. Thus, there have been several different interpretations about the separation principles of TRIZ. The different interpretations make problems more ambiguous to solve when the problem solvers apply the 4 separation principles. This research aims to fill the gap in several ways. First, this paper classify the types of contradiction relations and the contradiction solving dimensions based on the Butterfly model for contradiction solving. Second, this paper compares and analyzes each contradiction relation type with the Butterfly diagram. The contributions of this paper lies in reducing the problem space by recognizing the structures and the types of contradiction problems exactly.

An experimental study on the flow separation characteristics of a paraglider canopy (패러글라이더 캐노피의 유동박리 특성에 대한 실험적 연구)

  • Shin, Jeonghan;Chae, Seokbong;Shin, Yisu;Kim, Jooha
    • Journal of the Korean Society of Visualization
    • /
    • v.18 no.3
    • /
    • pp.69-76
    • /
    • 2020
  • In the present study, we investigate the flow separation characteristics of a paraglider canopy model by tuft visualization. The experiment is conducted at Re = 3.3×105 in a wind tunnel large enough to contain the three-dimensional paraglider canopy model, where Re is Reynolds number based on the mean chord length and the free-stream velocity. The flow separation characteristics of the canopy model near the wing root are similar to those of a two-dimensional airfoil with a cross-section similar to the model. On the other hand, near the wingtip region, the flow separation is suppressed by the downwash induced by the wingtip vortex. As a result, as the angle of attack increases, the flow separation occurs from the wing root region of the canopy model and develops toward the wingtip.

Models for Measurement of Efficiency of Free Flight Separation Assurance (자유비행 분리보증 효율성 측정모델 연구)

  • Lee, Dae-Yong;Young, Kang-Ja
    • Journal of Advanced Navigation Technology
    • /
    • v.15 no.6
    • /
    • pp.977-985
    • /
    • 2011
  • Airborne separation assurance is a key requirement for Free Flight Airspace operations, This paper study the feasibility of airborne separation assurance for free flight Airspaces operations by evaluating the efficiency measurement models. Three qualitatively different methods are utilized; one based Ground and Air conflict probability model, other based Dynamic Density model. the other based Direct operating cost model. The evaluation is Direct Operating Cost model and Two metrics are utilized for the efficiency measurements; airborne separation assurance performed quite well in the Free Flight evaluation; (1) 2 scenario of the conflict situations are resolved; (2) The MD-80 flight peformed separation assurance and efficiency, Not only appling for geometric method algorithm is more efficiently than potential method, but also the most efficiently geometric combined method.

Development of a New Droplet Collision Model Including the Stretching Separation Regime (스트레칭 분리 영역을 포함한 새로운 액적 충돌 모델의 개발)

  • Ko, Gwon-Hyun;Ryou, Hong-Sun
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.1891-1896
    • /
    • 2004
  • The present article proposes a new droplet collision model including the stretching separation regime and the formation of satellite droplets. The new model consists of a several equations to calculate the post-collision characteristics of colliding droplets and satellite droplets. These equations are derived from the energy balance of droplets between before and after collision. For binary collision of water droplets, the new model shows good agreement with experimental data for the number of satellite droplets. Nevertheless, it is thought that, in order to guarantee the generality of the new model, the improvements should be performed to consider the effects of the bouncing and the reflexive separation, which is essential process in the collision of hydrocarbon droplets.

  • PDF

Audio Source Separation Based on Residual Reprojection

  • Cho, Choongsang;Kim, Je Woo;Lee, Sangkeun
    • ETRI Journal
    • /
    • v.37 no.4
    • /
    • pp.780-786
    • /
    • 2015
  • This paper describes an audio source separation that is based on nonnegative matrix factorization (NMF) and expectation maximization (EM). For stable and highperformance separation, an effective auxiliary source separation that extracts source residuals and reprojects them onto proper sources is proposed by taking into account an ambiguous region among sources and a source's refinement. Specifically, an additional NMF (model) is designed for the ambiguous region - whose elements are not easily represented by any existing or predefined NMFs of the sources. The residual signal can be extracted by inserting the aforementioned model into the NMF-EM-based audio separation. Then, it is refined by the weighted parameters of the separation and reprojected onto the separated sources. Experimental results demonstrate that the proposed scheme (outlined above) is more stable and outperforms existing algorithms by, on average, 4.4 dB in terms of the source distortion ratio.

On the Separation Principle of Takagi-Sugeno Fuzzy Systems (Takagi-Sugeno 퍼지 시스템의 분리 원리에 관하여)

  • 이호재;박진배;주영혼
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2003.09b
    • /
    • pp.80-83
    • /
    • 2003
  • In this note, a separation principle of the Takagi-Sugeno (T-S) fuzzy-model-based controller/observer is investigated. The separation principle of T-S fuzzy-model-based controller/observer sharing the premise parts in the fuzzy rule with directly measurable premise variables is well established. In that case, the fact that the augmented observer-based control system has the eigenvalues of the sub-closed-loop control system by the state-feedback controller and the sub-closed-loop observer error system is used to prove the separation principle. This paper studies the separation principle of T-S fuzzy-model-based controller/observer in which the premise variables cannot be directly measurable.

  • PDF