• Title/Summary/Keyword: Separation Coefficient

Search Result 432, Processing Time 0.03 seconds

Effect of REM Addition on The Surface Tension and The Critical Temperature of The Immiscible Liquid Phase Separation of The 60%Bi-24%Cu-16%Sn alloy

  • Park, Joong-Chul;Min, Soon-Ki;Lee, Joon-Ho
    • Korean Journal of Materials Research
    • /
    • v.19 no.2
    • /
    • pp.111-114
    • /
    • 2009
  • For the fabrication of core-shell structure bimetallic lead-free solder balls, both the critical temperature ($T_{cr}$) for the phase separation of two immiscible liquid phases and the temperature coefficient of the interfacial tension between the two separated liquid phases are required. In order to obtain this information, the temperature dependence of the surface tension of 60%Bi-24%Cu-16%Sn(-REM) alloys was measured using the constrained drop method. The slope of the temperature dependence of the surface tension changed clearly at a critical temperature for the separation of two immiscible liquid phases. The critical temperature of the 60%Bi-24%Cu-16%Sn alloy was estimated to be 1097K. An addition of 0.05% Ce decreased the critical temperature to 1085K, whereas that of 0.05% La increased it to 1117K. It was found that the surface tension and its temperature coefficient of the 60%Bi-24%Cu-16%Sn alloy were slightly increased by the addition of 0.05% Ce and 0.05% La. In addition, additions of Ce and La increased the temperature coefficient of the interfacial tension.

Gas Permeation Properties of Hydroxyl-Group Containing Polyimide Membranes

  • Jung, Chul-Ho;Lee, Young-Moo
    • Macromolecular Research
    • /
    • v.16 no.6
    • /
    • pp.555-560
    • /
    • 2008
  • A series of hydroxyl-group containing polyimides (HPIs) were prepared in order to investigate the structure-gas permeation property relationship. Each polymer membrane had structural characteristics that varied according to the dianhydride monomers. The imidization processes were monitored using spectroscopic and thermog-ravimetric analyses. The single gas permeability of He, $H_2$, $CO_2$, $O_2$, $N_2$ and $CH_4$ were measured and compared in order to determine the effect of the polymer structure and functional -OH groups on the gas transport properties. Surprisingly, the ideal selectivity of $CO_2/CH_4$ and $H_2/CH_4$ increased with increasing level of -OH incorporation, which affected the diffusion of $H_2$ or the solubility of $CO_2$ in HPIs. For $H_2/CH_4$ separation, the difference in the diffusion coefficients of $H_2$ and $CH_4$ was the main factor for improving the performance without showing any changes in the solubility coefficients. However, the solubility coefficient of $CO_2$ in the HPIs increased at least four fold compared with the conventional polyimide membranes depending on the polymer structures. Based on these results, the polymer membranes modified with -OH groups in the polymer backbone showed favorable gas permeation and separation performance.

Implementation of Blind Source Recovery Using the Gini Coefficient (Gini 계수를 이용한 Blind Source Recovery 방법의 구현)

  • Jeong, Jae-Woong;Song, Eun-Jung;Park, Young-Cheol;Youn, Dae-Hee
    • The Journal of the Acoustical Society of Korea
    • /
    • v.27 no.1
    • /
    • pp.26-32
    • /
    • 2008
  • UBSS (unde-determined blind source separation) is composed of the stages of BMMR (blind mixing matrix recovery) and BSR (blind source recovery). Generally, these two stages are executed using the sparseness of the observed data, and their performance is influenced by the accuracy of the measure of the sparseness. In this paper, as introducing the measure of the sparseness using the Gini coefficient to BSR stage, we obtained more accurate measure of the sparseness and better performance of BSR than methods using the $l_1$-norm, $l_q$-norm, and hyperbolic tangent, which was confirmed via computer simulations.

Effects of the Free-Stream Turbulence and Surface Trip Wire on the Flow past a Sphere (자유류 난류와 표면 트립 와이어가 구 주위 유동에 미치는 영향)

  • Son, Kwang-Min;Choi, Jin;Jeon, Woo-Pyung;Choi, Hae-Cheon
    • 유체기계공업학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.187-190
    • /
    • 2006
  • In the present study, effects of tree-stream turbulence and surface trip wire on the flow past a sphere at $Re\;=\;0.4\;{\times}\;10^5\;{\sim}\;2.8\;{\times}\;10^5$ are investigated through wind tunnel experiments. Various types of grids are installed upstream of the sphere in order to change the tree-stream turbulence intensity. In the case of surface trip wire, 0.5mm and 2mm trip wires are attached from $20^{\circ}\;{\sim}\;90^{\circ}$ at $10^{\circ}$ interval along the streamwise direction. To investigate the flow around a sphere, drag measurement using a load cell, surface-pressure measurement, surface visualization using oil-flow pattern and near-wall velocity measurement using an I-type hot-wire probe are conducted. In the variation of free-stream turbulence, the critical Reynolds number decreases and drag crisis occurs earlier with increasing turbulence intensity. With increasing Reynolds number, the laminar separation point moves downstream, but the reattachment point after laminar separation and the main separation point are fixed, resulting in constant drag coefficient at each free-stream turbulence intensity. At the supercritical regime, as Reynolds number is further increased, the separation bubble is regressed but the reattachment and the main separation points are fixed. In the case of surface trip wire directly disturbing the boundary layer flow, the critical Reynolds number decreases further with trip wire located more downstream. However, the drag coefficient after drag crisis remains constant irrespective of the trip location.

  • PDF

Optimal Design for the Low Drag Tail Shape of the MIRA Model (MIRA Model 후미의 저저항 최적 설계)

  • Hur Nahmkeon;Kim Wook
    • Journal of computational fluids engineering
    • /
    • v.4 no.1
    • /
    • pp.34-40
    • /
    • 1999
  • Drag reduction on vehicles are the main concern for the body shape designers in order to lower the fuel consumption rate and to aid the driving stability. The drag of bluff bodies like transportation vehicles is mostly pressure drag due to the flow separation, which can be minimized by controlling the location and size of the separation bubble. In the present study, the TURBO-3D code is incorporated with optimal algorithm based on analytical approximation method to obtain an optimal afterbody shape of the MIRA Model corresponding to the lowest drag coefficient. For this purpose three mutually independent afterbody angles are chosen as design variables, while the drag coefficient is chosen as an objective function. It is demonstrated in the present study that an optimal body shape having the lowest drag coefficient which is about 6% lower than that of the original shape has been successfully obtained within number of iterations of tile optimal design loop.

  • PDF

Optimal Design for the Low Drag Tail Shape of the MIRA Model (MIRA model 후미의 저저항 최적 설계)

  • Kim Wook;Hur Nahmkeon
    • 한국전산유체공학회:학술대회논문집
    • /
    • 1998.05a
    • /
    • pp.67-74
    • /
    • 1998
  • Reducing drag of vehicles are the main concern for the body shape designers in order to lower fuel consumption rate and to aid the driving stability. The drag of bluff bodies like transportation vehicles is mostly pressure drag due to the flow separation, which can minimized by controlling the location and size of the separation bubble. In the present study, the TURBO-3D code is incorporated with optimal algorithm based on analytical approximation method to obtain optimal afterbody shape of the MIRA Model corresponding to the lowest drag coefficient. For this purpose three mutually independent afterbody angles are chosen as design variables, while the drag coefficient is chosen as an objective function. It is demonstrated in the present study that an optimal body shape having lowest drag coefficient which is about $6\%$ lower than that of the original shape has been successfully obtained within number of iterations of the optimal design loop.

  • PDF

Characteristics of ethylcellulose microcapsules of sulfisoxazole

  • Oh, Doo-Man;Lee, Min-Hwa
    • Archives of Pharmacal Research
    • /
    • v.5 no.2
    • /
    • pp.61-70
    • /
    • 1982
  • Sulfisoxazole, a chemotherapeutic agent, was microencapsulated with ethylcellulose by means of phase separation form cyclohexane by temperatture change. The size distribution was determined by use of standard sieves and the effect of core to wall ratio was noted. To examine their shapes and usrface characteristics, the microcapsules were observed with a scanning electron microscope. Release of the drug from microcapsules into pH 7.5 buffer medium was studied. The release pattern was found to have similar properties to the release of a drug from an insoluble porous matrix reported. The apparent diffusion coefficient of sulfisoxazole was measured for the transport of the drug from the core of microcapsules into the surronding sink condition. The apparent diffusion coefficient increased with increasing capsule size.

  • PDF

Separation of Single Channel Mixture Using Time-domain Basis Functions

  • Jang, Gil-Jin;Oh, Yung-Hwan
    • The Journal of the Acoustical Society of Korea
    • /
    • v.21 no.4E
    • /
    • pp.146-155
    • /
    • 2002
  • We present a new technique for achieving source separation when given only a single charmel recording. The main idea is based on exploiting the inherent time structure of sound sources by learning a priori sets of time-domain basis functions that encode the sources in a statistically efficient manner. We derive a learning algorithm using a maximum likelihood approach given the observed single charmel data and sets of basis functions. For each time point we infer the source parameters and their contribution factors. This inference is possible due to the prior knowledge of the basis functions and the associated coefficient densities. A flexible model for density estimation allows accurate modeling of the observation, and our experimental results exhibit a high level of separation performance for simulated mixtures as well as real environment recordings employing mixtures of two different sources. We show separation results of two music signals as well as the separation of two voice signals.

Separation of Single Channel Mixture Using Time-domain Basis Functions

  • 장길진;오영환
    • The Journal of the Acoustical Society of Korea
    • /
    • v.21 no.4
    • /
    • pp.146-146
    • /
    • 2002
  • We present a new technique for achieving source separation when given only a single channel recording. The main idea is based on exploiting the inherent time structure of sound sources by learning a priori sets of time-domain basis functions that encode the sources in a statistically efficient manner. We derive a learning algorithm using a maximum likelihood approach given the observed single channel data and sets of basis functions. For each time point we infer the source parameters and their contribution factors. This inference is possible due to the prior knowledge of the basis functions and the associated coefficient densities. A flexible model for density estimation allows accurate modeling of the observation, and our experimental results exhibit a high level of separation performance for simulated mixtures as well as real environment recordings employing mixtures of two different sources. We show separation results of two music signals as well as the separation of two voice signals.

Influence of Psychological Separation and Parental Attachment on School Resilience of Middle School Students (부모로부터의 심리적 분리 및 부모에의 애착이 중학생의 학교적응 유연성에 미치는 영향)

  • Lee, Hee-Yeong;Ha, Gyong-Shon
    • Journal of Fisheries and Marine Sciences Education
    • /
    • v.22 no.2
    • /
    • pp.205-217
    • /
    • 2010
  • This study attempted to investigate the influence of psychological separation and parental attachment of school resilience of middle school students. Although six hundred forty two middle school students participated in this study, final subjects of this study were 492(male, 243; female, 249) ones. Participants completed Psychological Separation Inventory, Parental Attachment Inventory and School Resilience Scale. Collected data were statistically analyzed using t-test, product moment correlation coefficient and multiple regression. The results of analyses revealed psychological separation statistically significantly predicted school resilience of middle school students and parental attachment statistically significantly predicted school resilience of middle school students. Based upon above results, it is concluded that psychological separation and parental attachment can be useful protective factors for school resilience. The implications of these results were discussed and future research questions were suggested with several comments on limitations of this study.