• Title/Summary/Keyword: Separation Behavior Analysis

Search Result 199, Processing Time 0.029 seconds

Numerical Analysis for Separation of Methane by Hollow Fiber Membrane with Cocurrent Flow (병류흐름 중공사 분리막에 의한 메탄 분리 수치해석)

  • Lee, Seungmin;Seo, Yeonhee;Kang, Hanchang;Kim, Jeonghoon;Lee, Yongtaek
    • Korean Chemical Engineering Research
    • /
    • v.53 no.3
    • /
    • pp.295-301
    • /
    • 2015
  • A theoretical analysis was carried out to examine the concentration behavior of methane from a biogas using a polysulfone membrane. After the governing equations were derived for the cocurrent flow mode in a membrane module, the coupled nonlinear differential equations were numerically solved with the Compaq Visual Fortran 6.6 software. At the typical operating condition of mole fraction of 0.7 in a feed stream, the mole fraction of methane in the retentate increased to 0.76 while the normalized retentate flow rate to the feed flow rate decreased from 1 to 0.79. When either the mole fraction of methane in a feed increased or the pressure of the feed stream increased, the methane mole fraction in the retentate increased. On the other hand, it was found that as either the membrane area decreased or the ratio of the permeate pressure to the feed pressure increased, the methane mole fraction in the retentate decreased. In case that the stage cut increased, the methane mole fraction in the retentate increased while the recovery of methane slightly decreased.

A Study on the Performance Analysis and synthesis for a Differentiated Service Networks (차등 서비스 네트워크에 대한 성능 분석과 합성에 대한 연구)

  • Jeon, Yong-Hui;Park, Su-Yeong
    • The KIPS Transactions:PartC
    • /
    • v.9C no.1
    • /
    • pp.123-134
    • /
    • 2002
  • The requirement for QoS (Quality of Service) has become an important Issue as real-time or high bandwidth services are increasing, such as Internet Telephony, Internet broadcasting, and multimedia service etc. In order to guarantee the QoS of Internet application services, several approaches are being sought including IntServ (Integrated Service) DiffServ(Differentiated Srvices), and MPLS(Multi-Protocol Label Switching). In this paper, we describe the performance analysis of QoS guarantee mechanism using the DiffServ. To analyze how the DiffServ performance was affected by diverse input traffic models and the weight value in WFQ(Weighted Fair Queueing), we simulated and performed performance evaluation under a random, bursty, and self-similar input traffic models and for diverse input parameters. leased on the results of performance analysis, it was confirmed that significant difference exist in packet delay and loss depending on the input traffic models used. However, it was revealed that QoS guarantee is possible to the EF (expedited Forwarding) class and the service separation between RF and BE (Best Effort) classes may also be achieved. Next, we discussed the performance synthesis problem. (i. e. derived the conservation laws for a DiffServ networks, and analysed the performance variation and dynamic behavior based on the resource allocation (i.e., weight value) in WFQ.

Sensitivity Analysis Study of Geotechnical Factors for Gas Explosion Vibration in Shallow-depth Underground Hydrogen Storage Facility (저심도 지하 수소저장소에서의 가스 폭발 진동에 대한 지반공학적 인자들의 민감도 분석 연구)

  • Go, Gyu-Hyun;Woo, Hyeon‑Jae;Cao, Van-Hoa;Kim, Hee-Won;Kim, YoungSeok;Choi, Hyun-Jun
    • Journal of the Korean Geotechnical Society
    • /
    • v.40 no.4
    • /
    • pp.169-178
    • /
    • 2024
  • While stable mid- to large-scale underground hydrogen storage infrastructures are needed to meet the rapidly increasing demand for hydrogen energy, evaluating the safety of explosion vibrations in adjacent buildings is becoming important because of gas explosions in underground hydrogen storage facilities. In this study, a numerical analysis of vibration safety effects on nearby building structures was performed assuming a hydrogen gas explosion disaster scenario in a low-depth underground hydrogen storage facility. A parametric study using a meta-model was conducted to predict changes in ground dynamic behavior for each combination of ground properties and to analyze sensitivity to geotechnical influencing factors. Directly above the hydrogen storage facility, the unit weight of the ground had the greatest influence on the change in ground vibration due to the explosion, whereas, farther away from the facility, the sensitivity of dynamic properties was found to be high. In addition, in evaluating the vibration stability of ground building structures based on the predicted ground vibration data and blasting vibration tolerance criteria, in the case of large reinforced concrete building structures, the ground vibration safety was guaranteed with a separation distance of about 10-30 m.

Studies on the Separation and Preconcentration of Metal Ions by Chelating Resin containing (Polystyrene-divinylbenzene)-thiazolylazo Phenol Derivatives(I) ((Polystyrene-divinylbenzene)-thiazolylazo phenol형 킬레이트 수지에 의한 금속이온의 분리 및 농축에 관한 연구(I))

  • Lim, Jae-Hee;Kim, Min-Kyun;Lee, Chang-Hun;Lee, Won
    • Analytical Science and Technology
    • /
    • v.9 no.3
    • /
    • pp.279-291
    • /
    • 1996
  • The new chelating resins, XAD-2, 4, 16-TAC and XAD-2, 4, 16-TAO were synthesized by Amberlite XAD-2, XAD-4, and XAD-16 macroreticular resins with 2-(2-thiazolylazo)-p-cresol(TAC) and 4-(2-thiazolylazo)orcinol(TAO) as functional groups and were characterized by elemental analysis and FT-IR spectrometry. It was found that the content of functional group in chelating resin was 0.60mmol/g in XAD-16-TAC and 0.68mmol/g in XAD-16-TAO respectively. The chelating resins were stable in acidic and alkaline solution and can be reused over 10 times. The sorption behavior of some metalions to two chelating resins was investigated by batch method, which included batch equilibrium, effect of pH, coexisting ions and masking agent. For the optimum condition of sorption, the time required for equilibrium was about 1 hour and optimum pH was 5. In the presence of anions such as ${SO_4}^{2-}$ and $CH_3COO^-$, the sorption of U(VI) ion was slightly reduced but other anions such as $Cl^-$ and $NO{_3}^-$ revealed no interference effect. Also, sorption capacity of U(VI) ion was decreased by addition of $CO{_3}^{2-}$ ion because of complex formation of $[UO_2(CO_3)_3]^{4-}$, but alkali metals and alkali earth metals including Na(I), K(I), Mg(II), and Ca(II) were not affected for the sorption extent. Masking agent, NTA showed better separation efficiency of U(VI) ion from coexisting metal ions such as Th(IV), Zr(IV), Hf(IV), Cu(II), Cd(II), Pb(II), Ni(II), Zn(II) and Mn(II) than EDTA, CDTA.

  • PDF

A Transmission Electron Microscopy Study on the Crystallization Behavior of In-Sb-Te Thin Films (In-Sb-Te 박막의 결정화 거동에 관한 투과전자현미경 연구)

  • Kim, Chung-Soo;Kim, Eun-Tae;Lee, Jeong-Yong;Kim, Yong-Tae
    • Applied Microscopy
    • /
    • v.38 no.4
    • /
    • pp.279-284
    • /
    • 2008
  • The phase change materials have been extensively used as an optical rewritable data storage media utilizing their phase change properties. Recently, the phase change materials have been spotlighted for the application of non-volatile memory device, such as the phase change random access memory. In this work, we have investigated the crystallization behavior and microstructure analysis of In-Sb-Te (IST) thin films deposited by RF magnetron sputtering. Transmission electron microscopy measurement was carried out after the annealing at $300^{\circ}C$, $350^{\circ}C$, $400^{\circ}C$ and $450^{\circ}C$ for 5 min. It was observed that InSb phases change into $In_3SbTe_2$ phases and InTe phases as the temperature increases. It was found that the thickness of thin films was decreased and the grain size was increased by the bright field transmission electron microscopy (BF TEM) images and the selected area electron diffraction (SAED) patterns. In a high resolution transmission electron microscopy (HRTEM) study, it shows that $350^{\circ}C$-annealed InSb phases have {111} facet because the surface energy of a {111} close-packed plane is the lowest in FCC crystals. When the film was heated up to $400^{\circ}C$, $In_3SbTe_2$ grains have coherent micro-twins with {111} mirror plane, and they are healed annealing at $450^{\circ}C$. From the HRTEM, InTe phase separation was occurred in this stage. It can be found that $In_3SbTe_2$ forms in the crystallization process as composition of the film near stoichiometric composition, while InTe phase separation may take place as the composition deviates from $In_3SbTe_2$.

Detection of Drought Stress in Soybean Plants using RGB-based Vegetation Indices (RGB 작물 생육지수를 활용한 콩 한발 스트레스 판별기술 평가)

  • Sang, Wan-Gyu;Kim, Jun-Hwan;Baek, Jae-Kyeong;Kwon, Dongwon;Ban, Ho-Young;Cho, Jung-Il;Seo, Myung-Chul
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.23 no.4
    • /
    • pp.340-348
    • /
    • 2021
  • Continuous monitoring of RGB (Red, Green, Blue) vegetation indices is important to apply remote sensing technology for the estimation of crop growth. In this study, we evaluated the performance of eight vegetation indices derived from soybean RGB images with various agronomic parameters under drought stress condition. Drought stress influenced the behavior of various RGB vegetation indices related soybean canopy architecture and leaf color. In particular, reported vegetation indices such as ExGR (Excessive green index minus excess red index), Ipca (Principal Component Analysis Index), NGRDI (Normalized Green Red Difference Index), VARI (Visible Atmospherically Resistance Index), SAVI (Soil Adjusted Vegetation Index) were effective tools in obtaining canopy coverage and leaf chlorophyll content in soybean field. In addition, the RGB vegetation indices related to leaf color responded more sensitively to drought stress than those related to canopy coverage. The PLS-DA (Partial Squares-Discriminant Analysis) results showed that the separation of RGB vegetation indices was distinct by drought stress. The results, yet preliminary, display the potential of applying vegetation indices based on RGB images as a tool for monitoring crop environmental stress.

Thermal Behavior of Energy Pile Considering Ground Thermal Conductivity and Thermal Interference Between Piles (주변 지반의 열전도도를 고려한 PHC 에너지파일의 열 거동 및 파일 간 열 간섭 현상에 대한 수치해석 연구)

  • Go, Gyu Hyun;Yoon, Seok;Park, Do Won;Lee, Seung-Rae
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.6
    • /
    • pp.2381-2391
    • /
    • 2013
  • In general, ground's thermal properties, types of heat exchanger, operational method, thermal interference between piles can be considered as key factors which affect the thermal performance of energy pile. This study focused on the effect of these factors on the performance by a numerical model reflecting a real ground condition. Depending on the degree of saturation of ground, pile's heat transfer rate showed a maximum difference of three times, and the thermal resistance of pile made a maximum difference of 8.7%. As for the type of heat exchanger effects on thermal performance, thermal efficiency of 3U type energy pile had a higher value than those of W and U types. The periodic operation (8 hours operation, 16 hours pause) can preserve about 20% of heat efficiency compared to continuous operation, and hence it has an advantage of preventing the thermal accumulation phenomenon. Thermal interference effect in group piles may vary depending on the ground condition because the extent decreases as the ground condition varies from saturated to dry. The optimal separation distance that maintains the decreasing rate of heat efficiency less than 1% was suggested as 3.2D in U type, 3.6D in W type, and 3.7D in 3U type in a general ground condition.

Analysis of Two-Dimensional Pollutant Transport in Meandering Streams (사행하천에서 오염물질의 2차원 거동특성 해석)

  • Oh, Jung-Sun;Seo, Il-Won;Kim, Young-Han
    • Journal of Korea Water Resources Association
    • /
    • v.37 no.12
    • /
    • pp.979-991
    • /
    • 2004
  • In this study, RMA2 and RMA4, the 2-D depth-averaged models, were employed to simulate the two-dimensional mixing characteristics of the pollutants in the natural streams. The velocity and depth were first calculated using RMA2, 2-D hydrodynamic model, and then the resulting flow field was inputted to RMA4, 2-D water quality model, to compute the concentration field. RMA models were verified using the velocity and concentration data measured in S-curved meandering channel. The results showed that the RMA2 model simulated well the phenomenon that the maximum velocity line is located at the Inner bank of meandering channel, and the RMA4 model was well adapted to reproduce the general mixing behavior and the separation of tracer clouds. Comparing model simulations with measured data in the field experiments, RMA2 model simulated well general flow field and tendency that the maximum velocity line skewed toward the outer bank which were found in field experiments. The simulations of RMA4 model showed that the center of the tracer cloud tends to follow the path in which the maximum velocity occurs. In this study, the dispersion coefficients are fine-tuned based on the measured coefficients calculated using field concentration data, and the results show reasonable agreement with predictive equations.

A Study on Electrolysis of Heavy Water and Interaction of Hydrogen with Lattice Defects in Palladium Electrodes (팔라디움전극에서 중수소의 전기분해와 수소와 격자결함의 반응에 관한 연구)

  • Ko, Won-Il;Yoon, Young-Ku;Park, Yong-Ki
    • Nuclear Engineering and Technology
    • /
    • v.24 no.2
    • /
    • pp.141-153
    • /
    • 1992
  • Excess tritium analysis was peformed to verify whether or not cold fusion occurs during electrolysis of heavy water in the current density range of 83~600 mA/$\textrm{cm}^2$ for a period of 24 ~ 48 hours with use of palladium electrodes of seven different processing treatments and geometries. The extent of recombination of D$_2$ and $O_2$gases in the electrolytic cell was measured for the calculation of accurate enthaplpy values. The behavior and interaction of hydrogen atoms with defects in Pd electrodes were examined using the Sieverts gas charging and the positron annihilation(PA) method. Slight enrichment of tritium observed was attributed to electrolytic enrichment but not to the formation of a by-product of cold fusion. The extent of recombination of D$_2$and $O_2$gases was 32%. Hence the excess heat measured during the electrolysis was considered to be due to the exothermic reaction of recombination but not to nuclear fusion. Lifetime results from the PA measurements on the Pd electrodes indicated that hydrogen atoms could be trapped at dislocations and vacancies in the electrodes and that dislocations were slightly more preferred sites than vacancies. It was also inferred from R parameters that the formation of hydrides was accompanied by generation of mostly dislocations. Doppler broadening results of the Pd electrodes indicated that lattiec defect sites where positrons were trapped first increased and then decreased, and this cycle was repeated as electrolysis continued. It can be inferred from PA measurements on the cold-rolled Pd and the isochronally annealed Pd hydride specimens that microvoid-type defects existed in the hydrogen-charged electrode specimen.

  • PDF

A Study on the Sorption Behavior of U(VI) ion by Arsenazo I-XAD-2 Chelating Resin (Arsenazo I-XAD-2 킬레이트수지를 이용한 U(VI) 이온의 분리 및 농축에 관한 연구)

  • Lee, Chang-Hun;Lee, Si-Eun;Lim, Jae-Hee;Eom, Tae-Yoon;Kim, In-Whan;Kang, Chang-Hee;Lee, Won
    • Analytical Science and Technology
    • /
    • v.6 no.5
    • /
    • pp.489-499
    • /
    • 1993
  • Some sorption behaviors of U(VI) ion on Arsenazo I-XAD-2 chelating resin were investigated. This chelating resin was synthesized by the diazonium coupling of Amberlite XAD-2 resin with Arsenzo I chelating reagent and characterized by elementary analysis method and IR spectrometry. The optimum conditions for the sorption of U(VI) ion were examined with respect to pH, U(VI) ion concentration and shaking time. Total sorption capacity of this chelating resin on U(VI) ion was 0.39mmol U(VI)/g resin in the pH range of 4.0~4.5. This chelating resin was showed increased sorption capacity on the increased pH value. It was confirmed that sorption mechanism of U(VI) ion on the Arsenazo I-XAD-2 chelating resin was competition reacting between U(VI) ion and $H^+$ ion. Breakthrough volume and overall capacity of U(VI) ion measured by column were was 600 ml and 0.38 mmol U(VI)/g resin, respectively. The desorption of U(VI) ion was showed recovery of 90~96% using 3M $HNO_3$ and 3M $Na_2CO_3$ as a desorption solution. The separation and concentration of U(VI) ion from natural water and sea water was performed successfully by Arsenazo I-XAD-2 chelating resin.

  • PDF