• Title/Summary/Keyword: Separation Behavior

Search Result 657, Processing Time 0.029 seconds

Membrane Filtration Characteristics of Oil/Water Emulsions (오일/물 에멀젼의 분리막 투과 특성)

  • Kim, Jong-Pyo;Lim, Jin-Soo;Ryu, Jong-Hoon;Kim, Jae Jin;Chung, Kun Yong;Chun, Myung-Suk;Min, Byoung-Ryul
    • Clean Technology
    • /
    • v.5 no.2
    • /
    • pp.69-78
    • /
    • 1999
  • Separation characteristics of cutting oil-in-water emulsions were studied experimentally by using various kinds of flat-type microfiltration and ultrafiltration membranes. For ultrafiltration membranes the permeation behavior of cutting oil emulsions obeys the film model, whereas a significant deviation from the model was observed for ASYPOR microfiltration membranes. The experimental data obtained for all the membranes showed that the effect of operating pressure on the permeation flux of oil-in-water emulsions is not very significant. At low transmembrane pressures the permeation flux decreased gradually with increasing filtration time, whereas the permeation flux at high transmembrane pressures decreased steeply for early filtration time. However, every flux eventually reached a constant value that depends only on the applied transmembrane pressure. For the hydrophobic polycarbonate microfiltration membrane the permeation flux increased with the filtration time. The critical permeation pressures were also determined from the data obtained from unstirred cell experiments.

  • PDF

Ionic Liquid as a Solvent and the Long-Term Separation Performance in a Polymer/Silver Salt Complex Membrane

  • Kang, Sang-Wook;Char, Kook-Heon;Kim, Jong-Hak;Kang, Yong-Soo
    • Macromolecular Research
    • /
    • v.15 no.2
    • /
    • pp.167-172
    • /
    • 2007
  • The reduction behavior of silver ions to silver nanoparticles is an important topic in polymer/silver salt complex membranes to facilitate olefin transport, as this has a significant effect on the long-term performance stability of the membrane. In this study, the effects ofthe solvent type on the formation of silver nanoparticles, as well as the long-term membrane performance of a solid polymer/silver salt complex membrane were investigated. These effects were assessed for solid complexes of poly(N-vinyl pyrrolidone) $(PVP)/AgBF_4$, using either an ionic liquid (IL), acetonitrile (ACN) or water as the solvent for the membrane preparation. The membrane performance test showed that long-term stability was strongly dependent on the solvent type, which increased in the following order: IL > ACN >> water. The formation of silver nanoparticles was more favorable with the solvent type in the reverse order, as supported by UV-visible spectroscopy. The poor stability of the $(PVP)/AgBF_4$ membrane when water was used as the solvent might have been due to the small amount of water present in the silver-polymer complex membranes actively participating in the reduction reaction of the silver ions into silver nanoparticles. Conversely, the higher stability of the $(PVP)/AgBF_4$, membrane when an IL was used as the solvent was attributable to the cooperative coordination of silver ions with the IL, as well as with the polymer matrix, as confirmed by FTIR spectroscopy.

Polyimide Multilayer Thin Films Prepared via Spin Coating from Poly(amic acid) and Poly(amic acid) Ammonium Salt

  • Ha, You-Ri;Choi, Myeon-Cheon;Jo, Nam-Ju;Kim, Il;Ha, Chang-Sik;Han, Dong-Hee;Han, Se-Won;Han, Mi-Jeong
    • Macromolecular Research
    • /
    • v.16 no.8
    • /
    • pp.725-733
    • /
    • 2008
  • Polyimide (PI) multilayer thin films were prepared by spin-coating from a poly(amic acid) (PAA) and poly(amic acid) ammonium salt (PAAS). PI was prepared from pyromellitic dianhydride (PMDA) and 4,4'-oxydianiline (ODA) PAA. Different compositions of PAAS were prepared by incorporating triethylamine (TEA) into PMDA-ODA PAA in dimethylacetamide. PI multilayer thin films were spin-coated from PMDA-ODA PAA and PAAS. The PAAS comprising cationic and anionic moieties were spherical with a particle size of $20{\sim}40\;nm$. Some particles showed layers with ammonium salts, despite poor ordering. Too much salt obstructed the interaction between the polymer chains and caused phase separation. A small amount of salt did not affect the interactions of the interlayer structure but did interrupt the stacking between chains. Thermogravimetric analysis (TGA) showed that the average decomposition temperature of the thin films was $611^{\circ}C$. All the films showed almost single-step, thermal decomposition behavior. The nanostructure of the multilayer thin films was confirmed by X -ray reflectivity (XRR). The LF 43 film, which was prepared with a 4:3 molar ratio of PMDA and ODA, was comprised of uniformly spherical PAAS particles that influenced the nanostructure of the interlayer by increasing the interaction forces. This result was supported by the atomic force microscopy (AFM) data. It was concluded that the relationship between the uniformity of the PAAS particle shapes and the interaction between the layers affected the optical and thermal properties of PI layered films.

Effect of Low Temperature Annealing on the Magnetoresistance in Co/Cu Artificial Superlattice (Co/Cu인공초격자에서 저온 열처리가 자기저항에 미치는 영향)

  • 민경익;송용진;이후산;주승기
    • Journal of the Korean Magnetics Society
    • /
    • v.3 no.4
    • /
    • pp.305-309
    • /
    • 1993
  • Thermal stability of Co/Cu artificial superlattice (AS) prepared by RF-magnetron sputtering and the effect of low temperature annealing on the magnetoresistance of the AS have been investigated in this work. Dependence of annealing behavior on the Cu spacer thickness, Fe underlayer thickness, and kind of the underlayer was examined and the relationship between the interfacial reaction and magnetoresistance was studied. It turned out that when Co/Cu AS was annealed at low temperature ($<450^{\circ}C$), the magnetoresistance could increase in the case of AS with thick spacer Cu ($20~25\AA$) layer, whereas it decreased in the case of AS with thin spacer Cu ($7\AA$) layer, which of the former is in contrast with previous reports and the latter in consistent with them. The increase of magnetoresistance is due to increase of interfacial atomic sharpness, which is supported by low angle X-ray diffraction analysis. The thermal stability of Co/Cu AS was better in the case of thick Fe underlayered AS. Interfacial reaction (separation of intermixed Co and Cu) could be observed at lower temperature for (200)-textured samples than for (111)-textured samples, which can be interpreted in terms of interdiffusion kinetics depending on the crystallographic orientation.

  • PDF

Collision Efficiency Estimation in the DAF Contact Zone using Computational Fluid Dynamics (전산유체 기법을 이용한 용존공기부상법에서의 접촉도 조건변화에 따른 충돌효율평가)

  • Kim, Sung-Hoon;Yoo, Je-Seon;Park, Hee-Kyung
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.18 no.2
    • /
    • pp.201-207
    • /
    • 2004
  • Dissolved air flotation (DAF) is a solid-liquid separation process that uses fine rising bubbles to remove particles in water. Most of particle-bubble collision occurs in the DAF contact zone. This initial contact considered by the researchers to play a important role for DAF performance. It is hard to make up conceptual model through simple mass balance for estimating collision efficiency in the contact zone because coupled behavior of the solid-liquid-gas phase in DAF system is 90 complicate. In this study, 2-phase(gas-liquid) flow equations for the conservation of mass, momentum and turbulence quantities were solved using an Eulerian-Eulerian approach based on the assumption that very small particle is applied in the DAF system. For the modeling of turbulent 2-phase flow in the reactor, the standard $k-{\varepsilon}$ mode I(liquid phase) and zero-equation(gas phase) were used in CFD code because it is widely accepted and the coefficients for the model are well established. Particle-bubble collision efficiency was calculated using predicted turbulent energy dissipation rate and gas volume fraction. As the result of this study, the authors concluded that bubble size and recycle ratio play important role for flow pattern change in the reactor. Predicted collision efficiency using CFD showed good agreement with measured removal efficiency in the contact zone. Also, simulation results indicated that collision efficiency at 15% recycle ratio is higher than that of 10% and showed increasing tendency of the collision efficiency according to the decrease of the bubble size.

Synthesis of Highly Selective Polyimide Material and Comparison of Gas Permeability by Molecular Dynamics Study (고선택성 폴리이미드 소재의 합성 및 분자동력학 연구를 통한 기체투과도의 비교)

  • Lee, Jung Moo;Kim, Deuk Ju;Jeong, Moon Ki;Lee, Myung Gun;Park, Chi Hoon;Nam, Sang Yong
    • Membrane Journal
    • /
    • v.25 no.2
    • /
    • pp.162-170
    • /
    • 2015
  • In this study, gas permeability of polyimide materials having a various amine group was measured and molecular dynamics was used to analyze the dynamic characteristics of the gas molecules in the polyimide by calculating the position and velocity of the gas molecules with change of the time. The gas permeability of polyimide membrane having substitution site which increase free volume in the polymer was increased. However, polyimide with rigid structure showed decreased gas permeability. As a result of analyzing the change in the gas permeation behavior using molecular dynamics simulations, we confirmed that the results show the same tendency with actual measurements of the gas permeability.

Acculturation Strategies of Immigrated Women and Adolescents' Career Development (이주 여성의 문화적응 유형과 청소년기 자녀 진로 지원)

  • Kang, Hee Kyung
    • The Journal of the Korea Contents Association
    • /
    • v.19 no.12
    • /
    • pp.259-269
    • /
    • 2019
  • This study examined the acculturation strategies of immigrant women and the relationship in adolescents' career development. The data were from 2016 Multicultural Adolescents Panel Study, 1,248 cases. The highest rate was the assimilation followed by integration, separation and marginalization among immigrant women' acculturation strategies. The parenting efficacy, behaviors for career development and parents' support were related with acculturation strategies. The adolescents' career attitudes and perceived career barriers were also related with the acculturation strategies of immigrant mothers. As compared other strategies, assimilation strategy had positive relationships with parenting efficacy, behaviors for career development, parents' support, adolescents' career attitudes and perceived career barriers. This study provided some implications for immigrant families with adolescents.

Synthesis and Electrochemical Characterization of Reduced Graphene Oxide-Manganese Oxide Nanocomposites

  • Lee, Yu-Ri;Song, Min-Sun;Lee, Kyung-Min;Kim, In-Young;Hwang, Seong-Ju
    • Journal of Electrochemical Science and Technology
    • /
    • v.2 no.1
    • /
    • pp.1-7
    • /
    • 2011
  • Nanocomposites of reduced graphene oxide and manganese (II,III) oxide can be synthesized by the freeze-drying process of the mixed colloidal suspension of graphene oxide and manganese oxide, and the subsequent heat-treatment. The calcined reduced graphene oxide-manganese (II,III) oxide nanocomposites are X-ray amorphous, suggesting the formation of homogeneous and disordered mixture without any phase separation. The reduction of graphene oxide to reduced graphene oxide upon the heat-treatment is evidenced by Fourier-transformed infrared spectroscopy. Field emission-scanning electronic microscopy and energy dispersive spectrometry clearly demonstrate the formation of porous structure by the house-of-cards type stacking of reduced graphene oxide nanosheets and the homogeneous distribution of manganese ions in the nanocomposites. According to Mn K-edge X-ray absorption spectroscopy, manganese ions in the calcined nanocomposites are stabilized in octahedral symmetry with mixed Mn oxidation state of Mn(II)/Mn(III). The present reduced graphene oxide-manganese oxide nanocomposites show characteristic pseudocapacitance behavior superior to the pristine manganese oxide, suggesting their applicability as electrode material for supercapacitors.

A Study on Combustion and Heat Transfer in Premixed Impinging Flames of Syngas(H2/CO)/Air Part II: Heat Transfer Characteristics (합성가스(H2/CO)/공기 예혼합 충돌화염의 연소 및 열전달 연구 Part II : 열전달 특성)

  • Sim, Keunseon;Jeong, Byeonggyu;Lee, Yongho;Lee, Keeman
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.25 no.1
    • /
    • pp.59-71
    • /
    • 2014
  • An experimental study has been conducted to investigate the heat transfer characteristics of laminar syngas/air mixture with 10% hydrogen content impinging normally to a flat plate of cylinder. Effects of impinging distance, Reynolds number and equivalence ratio as major parameters on heat fluxes of stagnation point and radial direction were examined experimentally by the direct photos and data acquisitions from heat flux sensor. In this work, we could find the incurved flame behavior of line shaped inner top-flame in very closed distance between flat plate and burner exit, which has been not reported from general gas-fuels. There were 3 times of maximum and 2 times minimum heat flux of stagnation point with respect to the impinging distance for the investigation of Reynolds number and equivalence ratio effect. It was confirmed that the maximum heat flux of stagnation point in 1'st and 2'nd peaks increased with the increase of the Reynolds number due to the Nusselt number increment. There was a third maximum rise in the heat flux of stagnation point for larger separation distances and this phenomenon was different each for laminar and turbulent condition. The heat transfer characteristics between the stagnation and wall jet region in radial heat flux profiles was investigated by the averaged heat flux value. It has been observed that the values of averaged heat flux traced well with the characteristics of major parameters and the decreasing of averaged heat flux was coincided with the decreasing trend of adiabatic temperature in spite of the same flow condition, especially for impinging distance and equivalence ratio effects.

Characterization of a pH/Temperature-Sensitive Hydrogel Synthesized at Different pH and Temperature Conditions (pH/온도-동시 민감성 Hydrogel의 합성조건에 따른 특성 연구)

  • 유형덕;정인식;박창호
    • KSBB Journal
    • /
    • v.15 no.6
    • /
    • pp.548-555
    • /
    • 2000
  • A hydrogel, poly(N-isopropylacrylamide-co-N, N-dimethylaminopropylmethacrylamide), sensitive to both pH and temperature, was synthesized and characterized at $^13∼23{\circ}C$ and pH of 10.3∼12.3. The gel was more transparent and mechanically stronger at lower preparation temperature and pH. Large pores observed in scanning electron microscope seem to be responsible for the lower biomolecular separation efficiency. The lower critical solution temperature (LCST) decreased at a higher polymerization temperature. At $25^{\circ}C$, which is lower than the LCST, the gel was swollen regardless of the solution pH. At $40^{\circ}C$, however, the gel was swollen at neutral and acidic pHs even though the temperature was higher than the LCST. The gel collapse pH, defined as the point at which the gel made its largest volume decrease per unit pH increment, increased as the gel preparation temperature increased.

  • PDF