• Title/Summary/Keyword: Separation Algorithm

Search Result 431, Processing Time 0.028 seconds

A Sequential Joint Maximum Likelihood Algorithm for Blind Co-Channel Signal Separation (블라인드 동채널 신호 분리를 위한 순차적인 Joint Maximum Likelihood 알고리듬)

  • Inseon Jang;Park, Seungjin
    • Proceedings of the IEEK Conference
    • /
    • 2001.09a
    • /
    • pp.85-88
    • /
    • 2001
  • In this paper we consider a problem of blind co-channel signal separation, the goal of which is to estimate multiple co-channel digitally modulated signals using an antenna array. We employ the joint maximum likelihood estimation and present a sequential algorithm, which is referred to as sequential joint maximum likelihood (SJML) algorithm. It separates multiple co-channel signal on-line and converges fast in overdetermined noisy communication environment. And the computational complexity of SJML for M-QAM (M=8, 16, 64,...) signals is less expensive compared to the SLSP. Useful behavior of this algorithm are confirmed by simulations.

  • PDF

An Applicability of Teager Energy Operator and Energy Separation Algorithm for Waveform Distortion Analysis : Harmonics, Inter-harmonics and Frequency Variation

  • Cho, Soo-Hwan;Hur, Jin;Chung, Il-Yop
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.4
    • /
    • pp.1210-1216
    • /
    • 2014
  • This paper deals with an application of Teager Energy Operator (TEO) and Energy Separation Algorithm(ESA) to detect and determine various voltage waveform distortions like harmonics, inter-harmonics and frequency variation. Because the TEO and DESA algorithm was initially proposed for speech or communication analysis, its applications are limited to some types of waveform in the power quality analysis area. For example, an undistorted voltage signal is similar with a pure sinusoid. A voltage fluctuation is very similar with an amplitude-modulated signal, from the viewpoint of signal theory. And a continuous frequency variation is similar with a frequency-modulated signal, which is also known as a chirp signal. This paper is written to show that the TEO and DESA algorithm can be used for detecting occurrences of the representative waveform distortions and determining their instantaneous information of amplitude and frequency.

Separation of Single Channel Mixture Using Time-domain Basis Functions

  • Jang, Gil-Jin;Oh, Yung-Hwan
    • The Journal of the Acoustical Society of Korea
    • /
    • v.21 no.4E
    • /
    • pp.146-155
    • /
    • 2002
  • We present a new technique for achieving source separation when given only a single charmel recording. The main idea is based on exploiting the inherent time structure of sound sources by learning a priori sets of time-domain basis functions that encode the sources in a statistically efficient manner. We derive a learning algorithm using a maximum likelihood approach given the observed single charmel data and sets of basis functions. For each time point we infer the source parameters and their contribution factors. This inference is possible due to the prior knowledge of the basis functions and the associated coefficient densities. A flexible model for density estimation allows accurate modeling of the observation, and our experimental results exhibit a high level of separation performance for simulated mixtures as well as real environment recordings employing mixtures of two different sources. We show separation results of two music signals as well as the separation of two voice signals.

On the Separation of the Rank-1 Chvatal-Gomory Inequalities for the Fixed-Charge 0-1 Knapsack Problem (고정비용 0-1 배낭문제에 대한 크바탈-고모리 부등식의 분리문제에 관한 연구)

  • Park, Kyung-Chul;Lee, Kyung-Sik
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.36 no.2
    • /
    • pp.43-50
    • /
    • 2011
  • We consider the separation problem of the rank-1 Chvatal-Gomory (C-G) inequalities for the 0-1 knapsack problem with the knapsack capacity defined by an additional binary variable, which we call the fixed-charge 0-1 knapsack problem. We analyze the structural properties of the optimal solutions to the separation problem and show that the separation problem can be solved in pseudo-polynomial time. By using the result, we also show that the existence of a pseudo-polynomial time algorithm for the separation problem of the rank-1 C-G inequalities of the ordinary 0-1 knapsack problem.

Separation of Single Channel Mixture Using Time-domain Basis Functions

  • 장길진;오영환
    • The Journal of the Acoustical Society of Korea
    • /
    • v.21 no.4
    • /
    • pp.146-146
    • /
    • 2002
  • We present a new technique for achieving source separation when given only a single channel recording. The main idea is based on exploiting the inherent time structure of sound sources by learning a priori sets of time-domain basis functions that encode the sources in a statistically efficient manner. We derive a learning algorithm using a maximum likelihood approach given the observed single channel data and sets of basis functions. For each time point we infer the source parameters and their contribution factors. This inference is possible due to the prior knowledge of the basis functions and the associated coefficient densities. A flexible model for density estimation allows accurate modeling of the observation, and our experimental results exhibit a high level of separation performance for simulated mixtures as well as real environment recordings employing mixtures of two different sources. We show separation results of two music signals as well as the separation of two voice signals.

Blind signal separation for coprime planar arrays: An improved coupled trilinear decomposition method

  • Zhongyuan Que;Xiaofei Zhang;Benzhou Jin
    • ETRI Journal
    • /
    • v.45 no.1
    • /
    • pp.138-149
    • /
    • 2023
  • In this study, the problem of blind signal separation for coprime planar arrays is investigated. For coprime planar arrays comprising two uniform rectangular subarrays, we link the signal separation to the tensor-based model called coupled canonical polyadic decomposition (CPD) and propose an improved coupled trilinear decomposition approach. The output data of coprime planar arrays are modeled as a coupled tensor set that can be further interpreted as a coupled CPD model, allowing a signal separation to be achieved using coupled trilinear alternating least squares (TALS). Furthermore, in the procedure of the coupled TALS, a Vandermonde structure enforcing approach is explicitly applied, which is shown to ensure fast convergence. The results of Monto Carlo simulations show that our proposed algorithm has the same separation accuracy as the basic coupled TALS but with a faster convergence speed.

Experimental study on bridge structural health monitoring using blind source separation method: arch bridge

  • Huang, Chaojun;Nagarajaiah, Satish
    • Structural Monitoring and Maintenance
    • /
    • v.1 no.1
    • /
    • pp.69-87
    • /
    • 2014
  • A new output only modal analysis method is developed in this paper. This method uses continuous wavelet transform to modify a popular blind source separation algorithm, second order blind identification (SOBI). The wavelet modified SOBI (WMSOBI) method replaces original time domain signal with selected time-frequency domain wavelet coefficients, which overcomes the shortcomings of SOBI. Both numerical and experimental studies on bridge models are carried out when there are limited number of sensors. Identified modal properties from WMSOBI are analyzed and compared with fast Fourier transform (FFT), SOBI and eigensystem realization algorithm (ERA). The comparison shows WMSOBI can identify as many results as FFT and ERA. Further case study of structural health monitoring (SHM) on an arch bridge verifies the capability to detect damages by combining WMSOBI with incomplete flexibility difference method.

Comparison for the variable step-size FDICA with BSS algorithm in reverberant condition (반향환경에서의 가변 적응 상수를 이용한 FDICA와 여러 BSS 알고리즘과의 비교)

  • Park Keun-Soo;Park Jang-Sik;Son Kyung-Sik
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2005.05a
    • /
    • pp.369-373
    • /
    • 2005
  • This paper proposes a variable step size parameter method in frequency domain ICA (FDICA). The FDICA and the temporal analysis (TA) algorithm are experimented for blind source separation (BSS). This paper will compare the separation qualities of these two algorithms in various reverberation environments. Furthermore, it is shown that the proposed technique has the better separation performance than those of two methods especially in recorded data.

  • PDF

Simple Image-Separation Method for Measuring Two-Phase Flow of Freely Rising Single Bubble (상승하는 단일 버블 이상유동의 PIV 계측을 위한 영상분리기법)

  • Park Sang-min;Jin Song-wan;Kim Won-tae;Sung Jae-yong;Yoo Jung-Yul
    • 한국가시화정보학회:학술대회논문집
    • /
    • 2002.11a
    • /
    • pp.7-10
    • /
    • 2002
  • A novel two-phase PIV algorithm using a single camera has been proposed, which introduces a method of image-separation into respective phase images, and is applied to freely rising single bubble. Gas bubble, tracer particle and background each have different gray intensity ranges on the same image frame when reflection and dispersion in the phase interface are intrinsically eliminated by optical filters and fluorescent material. Further, the signals of the two phases do not interfere with each other. Gas phase velocities are obtained from the separated bubble image by applying the two-frame PTV. On the other hand, liquid phase velocities are obtained from the tracer particle image by applying the cross-correlation algorithm. Moreover, in order to increase the SNR (signal-to-noise ratio) of the cross-correlation of tracer particle image, image enhancement is employed.

  • PDF

Multiple Mixed Modes: Single-Channel Blind Image Separation

  • Tiantian Yin;Yina Guo;Ningning Zhang
    • Journal of Information Processing Systems
    • /
    • v.19 no.6
    • /
    • pp.858-869
    • /
    • 2023
  • As one of the pivotal techniques of image restoration, single-channel blind source separation (SCBSS) is capable of converting a visual-only image into multi-source images. However, image degradation often results from multiple mixing methods. Therefore, this paper introduces an innovative SCBSS algorithm to effectively separate source images from a composite image in various mixed modes. The cornerstone of this approach is a novel triple generative adversarial network (TriGAN), designed based on dual learning principles. The TriGAN redefines the discriminator's function to optimize the separation process. Extensive experiments have demonstrated the algorithm's capability to distinctly separate source images from a composite image in diverse mixed modes and to facilitate effective image restoration. The effectiveness of the proposed method is quantitatively supported by achieving an average peak signal-to-noise ratio exceeding 30 dB, and the average structural similarity index surpassing 0.95 across multiple datasets.