• Title/Summary/Keyword: Separated flow

Search Result 728, Processing Time 0.03 seconds

ROTATING FLOW ANALYSIS AROUND A HAWT ROTOR BLADE USING RANS EQUATIONS (RANS 방정식을 이용한 HAWT 로터 블레이드의 회전 유동장 해석)

  • Kim, T.S.;Lee, C.;Son, C.H.;Joh, C.Y.
    • Journal of computational fluids engineering
    • /
    • v.13 no.2
    • /
    • pp.55-61
    • /
    • 2008
  • The Reynolds-Averaged Navier-Stokes(RANS) analysis of the 3-D steady flow around the NREL Phase VI horizontal axis wind turbine(HAWT) rotor was performed. The CFD analysis results were compared with experimental data at several different wind speeds. The present CFD model shows good agreements with the experiments both at low wind speed which formed well-attache flow mostly on the upper surface of the blade, and at high wind speed which blade surface flow completely separated. However, some discrepancy occurs at the relatively high wind speeds where mixed attached and separated flow formed on the suction surface of the blade. It seems that the discrepancy is related to the onset of stall phenomena and consequently separation prediction capability of the current turbulence model. It is also found that strong span-wise flow occurs in stalled area due to the centrifugal force generated by rotation of the turbine rotor and it prevents abrupt reduction of normal force for higher wind speed than the designed value.

A Study on Characteristics of the Flow Around Two Square Cylinders in a Tandem Arrangement Using Particle Image Velocimetry (PIV를 이용한 직렬배열에서의 두 정사각기둥 주위의 유동특성에 관한 연구)

  • Kim, Dong-Keon;Lee, Jong-Min;Seong, Seung-Hak;Yoon, Soon-Hyun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.29 no.11 s.242
    • /
    • pp.1199-1208
    • /
    • 2005
  • The flow fields including velocities, turbulence intensities, Reynolds shear stress and turbulent kinetic energy were investigated using particle image velocimetry(PIV) to study the flow characteristics around two square cylinders in a tandem arrangement. The experiments were carried out in the range of the spacing from 1.0 to 4.0 widths of cylinder, Reynolds number of 5.3$\times$10$^{3}$ and 1.6$\times$10$^{4}$ respectively. Discontinuous jumping at the drag coefficient variation was found for two cylinders simultaneously when the spacing between two cylinders is varied. This phenomenon is attributed to a sudden change of the flow pattern which depends on the reattachment of the shear layer separated from the upstream cylinder. Near such a critical spacing, the changes of the flow fields as well as the effect of Reynolds number were studied in detail.

CFD Simulation of Air-particle Flow for Predicting the Collection Efficiency of a Cyclone Separator in Mud Handling System (Mud handling system 내 cyclone separator의 집진효율 추정을 위한 공기-분체의 CFD 시뮬레이션)

  • Jeon, Gyu-Mok;Park, Jong-Chun
    • Journal of Ocean Engineering and Technology
    • /
    • v.33 no.1
    • /
    • pp.42-49
    • /
    • 2019
  • Drilling mud was used once in the step of separating the gas and powder they were transported to a surge tank. At that time, the fine powder, such as dust that is not separated from the gas, is included in the gas that was separated from the mud. The fine particles of the powder are collected to increase the density of the powder and prevent air pollution. To remove particles from air or another gas, a cyclone-type separator generally can be used with the principles of vortex separation without using a filter system. In this study, we conducted numerical simulations of air-particle flow consisting of two components in a cyclone separator in a mud handling system to investigate the characteristics of turbulent vortical flow and to evaluate the collection efficiency using the commercial software, STAR-CCM+. First, the single-phase air flow was simulated and validated through the comparison with experiments (Boysan et al., 1983) and other CFD simulation results (Slack et al., 2000). Then, based on one-way coupling simulation for air and powder particles, the multi-phase flow was simulated, and the collection efficiency for various sizes of particles was compared with the experimental and theoretical results.

A Study on the Development of CW(Continuous-Wave)Doppler System for measuring Bi-directional Blood Flow Information (혈류 방향을 구별하는 연속 초음파 도플러 장치에 관한 연구)

  • 강충신;김영길
    • Journal of Biomedical Engineering Research
    • /
    • v.8 no.1
    • /
    • pp.75-80
    • /
    • 1987
  • With the conventional CW Doppler velocity meter, bl-directional velocities cannot be separated. The new CW Doppler system uses quadrature detection and phase rotation to produce simultaneous independent audio and velocity signals for forward and reverse blood flow direction, is fabricated. Specially, this system shows that phase rotation method for flow direction separation provides easy and satisfactory feature. From in vivo blood flow measurement, we can easily differentiate typical artery flow from vein flow, and measure both velocity characteristics qualitatively.

  • PDF

A Continuous Wavelet Study on Approach Wind and Building Pressure (접근풍속과 건물 변동풍압력에 대한 연속파동변화법의 적용)

  • Ham, Hee-Jung
    • Journal of Industrial Technology
    • /
    • v.25 no.B
    • /
    • pp.89-97
    • /
    • 2005
  • Application of proper orthogonal decomposition (POD) and continuous wavelet transform (CWT) is introduced to study wind speed and building roof pressures of flow separation region. In this study, a detailed analysis of the approach wind flow, wind-induced building pressure and the relation between the two fields was carried out using the POD technique and CWT analysis. The results show potential of the application of POD and CWT in characterization of spatio-temporal and spectral properties of the approach wind and its induced dynamic pressure events. Some of findings resulting from the application of this analysis can be summarized as follows: (1) The POD first principal coordinate of the roof pressure in the separated shear layer is closely correlated with the longitudinal component of oncoming flow. (2) The CWT analysis suggests that the extreme peak pressure in the separated shear layer is due to condensed large-scale eddy motions.

  • PDF

Cross-Spectral Characteristics of Wall Pressure Fluctuations in Flows over a Backward-Facing Step (후향계단 주위의 난류 박리재부착유동에서의 벽압력변동의 통계적 특징)

  • Lee, In-Won;Sung, Hyung-Jin
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.2
    • /
    • pp.280-287
    • /
    • 2000
  • Laboratory measurements were made of wall pressure fluctuations in a separated and reattaching flow over a backward-facing step. An array of 32 microphones along the streamwise direction was utilized. Various statistical properties of pressure fluctuations were scrutinized. The main emphasis was placed on the flow inhomogeneity along the streamwise direction. One point statistics such as the streamwise distribution of rms pressure and autospectra were shown to be generally consistent with other studies. The coherences and wavenumber spectra in the streamwise directions were indicative of the presence of dual modes in pressure; one is the large-scale vortical structure in low frequency and the other is the boundary-layer-like decaying mode in high frequency.

A Study on Flood Prediction without Rainfall Data (강우 데이터를 쓰지 않는 홍수예측법에 관한 연구)

  • 김치홍
    • Journal of the Korean Professional Engineers Association
    • /
    • v.18 no.2
    • /
    • pp.1-5
    • /
    • 1985
  • In the flood prediction research, it is pointed out that the difficulty of flood prediction is the frequently experienced overestimation of flood peak. That is caused by the rainfall prediction difficulty and the nonlinearity of hydrological phenomena. Even though the former reason will remain still unsolved, but the latter one can be possibly resolved the method of the AMRA (Auto Regressive Moving Average) model for each runoff component as developed by Dr. Hino and Dr. Hasebe. The principle of the method consists of separating though the numerical filters the total runoff time series into long-term, intermediate and short-term components, or ground water flow, interflow, and surface flow components. As a total system, a hydrological system is a non-linear one. However, once it is separated into two or three subsystems, each subsystem may be treated as a linear system. Also the rainfall components into each subsystem a estimated inversely from the runoff component which is separated from the observed flood. That is why flood prediction can be done without rainfall data. In the prediction of surface flow, the Kalman filter will be applicable but this paper shows only impulse function method.

  • PDF

Numerical Analysis of Stall Propagation in Linear Cascade (선형 익렬에서의 실속 전파에 관한 수치적 해석)

  • Seo, Young-Seok;Baek, Je-Hyun
    • Proceedings of the KSME Conference
    • /
    • 2000.11b
    • /
    • pp.416-421
    • /
    • 2000
  • The performance of gas turbine engines is affected by instabilities, like as rotating stall and/or surge. Rotating Stall is a transient intermediate stage between normal flow and complete flow breakdown leading to engine surge. Rotating Stall is associated with large amplitude nonaxisymmetric flow variations rotating around the compressor annulus. This paper presents the evolutions of stall propagation in a compressor cascade by numerical analysis. The flow phenomena due to stall cells and propagation speed are examined using 2 dimensional Navier - Stokes equations.

  • PDF

Velocity Field Measurement of Flow Around a Surface-Mounted Vertical Fence Using the Two-Frame PTV System (2-프레임 PTV를 이용한 수직벽 주위 유동장 해석)

  • Baek, Seung-Jo;Lee, Sang-Joon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.23 no.10
    • /
    • pp.1340-1346
    • /
    • 1999
  • The turbulent shear flow around a surface-mounted vertical fence was investigated using the two-frame PTV system. The Reynolds number based on the fence height(H) was 2950. From this study, it is revealed that at least 400 instantaneous velocity field data are required for ensemble average to get reliable turbulence statistics, but only 100 field data are sufficient for the time-averaged mean velocity information. Various turbulence statistics such as turbulent intensities, turbulence kinetic energy and Reynolds shear stress were calculated from 700 instantaneous velocity vector fields. The fence flow has an unsteady recirculation region behind the fence, followed by a slow relaxation to the flat-plate boundary layer flow. The time-averaged reattachment length estimated from the streamline distribution is about 11.2H. There exists a region of negative Reynolds shear stress near the fence top due to the highly convex (stabilizing) streamline-curvature of the upstream flow. The large eddy structure in the separated shear layer seems to have significant influence on the development of the separated shear layer and the reattachment process.

NUMERICAL SIMULATION OF FLOW PAST A POROUS CYLINDER WITH 20% SOLID VOLUME FRACTION (Solid volume fraction이 20% 인 다공성 실린더 주위의 유동 해석)

  • Chang, K.;Constantinescu, G.
    • Journal of computational fluids engineering
    • /
    • v.17 no.3
    • /
    • pp.87-92
    • /
    • 2012
  • The presence of a layer of vegetation which is relevant in river engineering or coastal engineering can modify the overall flow resistance, turbulent characteristics of flow. The patch of vegetation can be modelled and studied in a simple porous cylinder by previous researchers. Fully three dimensional Large Eddy Simulation is conducted in flow past a porous cylinder with a solid volume fraction (SVF) 0f 20%. The porous cylinder of diameter D contains 89 smaller cylinders which diameter is 0.048D in a regular staggered way. Reynolds number based on porous cylinder diameter D and the bulk velocity is 10,000. The large scale shedding is qualitatively similar to the one observed in the non-porous case (SVF=100%). The difference in the dynamics of the separated shear layer and the streamwise flow penetrating through the porous cylinder are compared with those in the non-porous cylinder. In particular, the wake billows form a larger distance from the back of the porous cylinder.