• Title/Summary/Keyword: Seocheon Power Plant

Search Result 6, Processing Time 0.022 seconds

A geochemical study on the saline waters circulating in an ash disposal pond of Seocheon Power Plant. Korea

  • Kim, Kang-Joo;Park, Seong-Min;Kim, Jin-San;Natarajan Rajmohan;Hwang, Gab-Soo;Yun, Seong-Taek;Kim, Hyun-Jung;Kim, Suk-Hwi
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2004.09a
    • /
    • pp.338-341
    • /
    • 2004
  • This study was carried out to understand the geochemistry of saline water circulating in an ash disposal pond of Seocheon power plant, Korea. For this study, ash pond waters, slurry water and seawater samples were collected and analyzed for major ions and trace elements. Results show that ash pond waters and slurry water are alkaline in nature due to high calcium content, and have high concentration of Ca, B, Li, As, Ba, Al, Si and Mn over seawater, suggest that these elements leached from fly ash even at high alkaline condition and ionic strength. Slurry water has high concentration of B, Ba, Li, Mn, Si and Sr compare to ash pond waters, expresses that these elements seem to be easily reached at initial stage fly ash-water interaction, and also might be associated with the surface of the fly ash particles. Additionally, PHREEQC program predicted several secondary solid phases, which are also influenced in the leaching of elements in to the saline water.

  • PDF

Content of Heavy Metals in Coal Fly Ash from the Samcheonpo and the Seocheon Power Plant (삼천포와 서천 화력발전소에서 발생하는 석탄회중의 중금속 함량에 관한 연구)

  • Yoon, Chung-Han;Oh, Keun-Chang;Kim, Yong-Woong;Shin, Bang-Sup
    • Economic and Environmental Geology
    • /
    • v.28 no.2
    • /
    • pp.147-154
    • /
    • 1995
  • Coal fly ashes collected from the Samcheonpo and the Seocheon Power Plants were analyzed for major and minor components and heavy metals such as As, Cd, Co, Cr, Cu, Ga, Hg, Mo, Ni, Pb, Sb, V and Zn in order to suggest basic data to apply coal fly ash as fertilizer or soil ameliorator. The specific gravity of the samples was less than 2.0, and amounts of organic matter range from 5.0% to 12.3%. The identified minerals by XRD were mainly quartz, mullite and pyrite in anthracite coal, and mainly quartz and mullite in bituminous coal. Generally, the contents of heavy metal elements analyzed were lower less than those of soil, though higher in some samples. Element couples of some elements( e.g., As-Mo, Zn ; Mo-As, Sb, V, Zn ; Sb-Zn ) show positive correlations with each other, but the high correlations of toxic elements such as As, Pb, Cd and Hg indicate to give attention to apply coal fly ash as fertilizer or soil ameliorator.

  • PDF

Desirable pH of Slurry in the Desulfurization Absorber for a 200 MW Anthracite Power Plant (200 MW급 무연탄 발전용 탈황 흡수탑에서 적정 슬러리pH)

  • Choi, Hyun-Ho;Yoo, Hoseon
    • Plant Journal
    • /
    • v.16 no.1
    • /
    • pp.38-43
    • /
    • 2020
  • In this study, Seochon Thermal Power Plant No.1 for anthracite coal was tested to find the proper operation range of limestone slurry pH in the absorber tower which can be operated continuously in compliance with the Air Quality Preservation Act and Seocheon Thermal Power Division's internal regulation, sulfur dioxide average emission regulation. When operating the sulfur dioxide concentration [ppm] in the combustion gas flowing into the desulfurization absorption tower at 370, 400, 460 and 550 ppm while the main operating elements such as the flow rate of the combustion gas were fixed, the proper slurry pH Were 4.4, 4.5, 4.8 and 5.1, respectively. Therefore, it is recommended to operate with the correlation equation, RpH=0.004×Cin+2.93 derived using sulfur dioxide and the appropriate slurry pH.

Study on Fly Ash as a New Raw Material in Paperboard Process (제지용 신규원료 플라이애시의 적용 가능성 평가)

  • Kim, Chul-Hwan;Lee, Ji-Young;Lee, Hui-Jin;Gwak, Hye-Jeong
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.42 no.4
    • /
    • pp.78-83
    • /
    • 2010
  • In this study, the possibility of the use of a new raw material in paperboard industry was investigated. Fly ash is one of the residues generated in the combustion of coal and generally captured from the chimney of coal-fired power plant. This material is utilized in many industries including cement, soil stabilization, composite etc., but it is not used in paper industry. Three types of fly ashes were collected from Hadong, boryeong and Seocheon steam power plants and we investigated their properties by scanning electron micrographs and particle size distribution. Papers were manufactured with KOCC and fly ashes, and the physical properties such as bulk, tensile strength, internal bond strength and ISO brightness were measured to identify the effects of fly ash on the paper properties.

Evaluation of Organic Matter and Trace Metal Contamination in Surface Sediments around the Geum River Estuary using Sediment Quality Guidelines (퇴적물 오염기준을 이용한 금강 하구역 표층 퇴적물내 유기물 및 미량금속 오염 평가)

  • Hwang, Dong-Woon;Lee, In-Seok;Choi, Minkyu;Kim, Sook-Yang;Choi, Hee-Gu
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.46 no.6
    • /
    • pp.930-940
    • /
    • 2013
  • We evaluated contamination with organic matter and trace metals by analyzing grain size, ignition loss (IL), chemical oxygen demand (COD), acid volatile sulfide (AVS), and trace metals (Al, Fe, Cu, Pb, Zn, Cd, Ni, Cr, Mn, Hg, and As) in surface sediments at 28 stations around the Geum River estuary in July 2008. The surface sediments in the estuary were mainly composed of coarse sediment (sand and muddy sand), with mean grain size (Mz) ranging between $2-4{\O}$. The high concentrations of IL, COD, and trace metals were mainly found at stations in front of the Gusan outer port and industrial complex, and near the Seocheon coast with relatively fine sediments. In addition, the concentrations of IL and all trace metals, except Pb and As, showed good positive correlations with Mz, indicating that the concentrations of organic matter and trace metals were mainly dependent on sediment grain size. The concentrations of COD, AVS, and trace metals in most sediments did not exceed the sediment quality guideline (SQGs). Although the sediments in the study region are not polluted with organic matter and trace metals, there are many point sources of pollutants, such as Gusan port and industrial complex, Janghang refinery, and a thermoelectric power plant around the Geum River estuary. Thus, the management of coastal environments through periodic monitoring of organic matter and trace metals is required in the future.

Numerical Analysis of Collapse Behavior in Industrial Stack Explosive Demolition (산업용 연돌 발파해체에서 붕괴거동에 관한 수치해석적 연구)

  • Pu-Reun Jeon;Gyeong-Jo Min;Daisuke Fukuda;Hoon Park;Chul-Gi Suk;Tae-Hyeob Song;Kyong-Pil Jang;Sang-Ho Cho
    • Explosives and Blasting
    • /
    • v.41 no.3
    • /
    • pp.62-72
    • /
    • 2023
  • The aging of plant structures due to industrialization in the 1970s has increased the demand for blast demolition. While blasting can reduce exposure to environmental pollution by shortening the demolition period, improper blasting design and construction plans pose significant safety risks. Thus, it is vital to consider optimal blasting demolition conditions and other factors through collapse behavior simulation. This study utilizes a 3-D combined finite-discrete element method (FDEM) code-based 3-D DFPA to simulate the collapse of a chimney structure in a thermal power plant in Seocheon, South Korea. The collapse behavior from the numerical simulation is compared to the actual structure collapse, and the numerical simulation result presents good agreement with the actual building demolition. Additionally, various numerical simulations have been conducted on the chimney models to analyze the impact of the duct size in the pre-weakening area. The no-duct, duct, and double-area duct models were compared in terms of crack pattern and history of Z-axis displacement. The findings show that the elapse-time for demolition decreases as the area of the duct increases, causing collapse to occur quickly by increasing the load-bearing area.