• Title/Summary/Keyword: Sentiment Visualization

Search Result 17, Processing Time 0.025 seconds

Opinion-Mining Methodology for Social Media Analytics

  • Kim, Yoosin;Jeong, Seung Ryul
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.1
    • /
    • pp.391-406
    • /
    • 2015
  • Social media have emerged as new communication channels between consumers and companies that generate a large volume of unstructured text data. This social media content, which contains consumers' opinions and interests, is recognized as valuable material from which businesses can mine useful information; consequently, many researchers have reported on opinion-mining frameworks, methods, techniques, and tools for business intelligence over various industries. These studies sometimes focused on how to use opinion mining in business fields or emphasized methods of analyzing content to achieve results that are more accurate. They also considered how to visualize the results to ensure easier understanding. However, we found that such approaches are often technically complex and insufficiently user-friendly to help with business decisions and planning. Therefore, in this study we attempt to formulate a more comprehensive and practical methodology to conduct social media opinion mining and apply our methodology to a case study of the oldest instant noodle product in Korea. We also present graphical tools and visualized outputs that include volume and sentiment graphs, time-series graphs, a topic word cloud, a heat map, and a valence tree map with a classification. Our resources are from public-domain social media content such as blogs, forum messages, and news articles that we analyze with natural language processing, statistics, and graphics packages in the freeware R project environment. We believe our methodology and visualization outputs can provide a practical and reliable guide for immediate use, not just in the food industry but other industries as well.

A Comparative Study of Dietary Related Zero-waste Patterns and Consumer Responses Before and After COVID-19 (코로나-19 이전과 이후 식생활 관련 제로웨이스트 운동 양상과 소비자 반응 비교)

  • Park, In-Hyoung;Park, You-min;Lee, Cheol;Sun, Jung-eun;Hu, Wendie;Chung, Jae-Eun
    • Human Ecology Research
    • /
    • v.60 no.1
    • /
    • pp.21-38
    • /
    • 2022
  • This study uses text mining compares and contrasts consumers' social media discourses on dietary related zero-waste movement before and after COVID-19. The results indicate that the amount of buzz on social networks for the zero- waste movement has been increasing after COVID-19. Additionally, the results of frequency analysis and topic modeling revealed that subjects associated with zero-waste movement were more diversified after COVID-19. Although the results of a sentiment analysis and word cloud visualization confirmed that consumers' positive responses toward the zero-waste have been increasing, they also revealed a need to educate and encourage those who are still not aware of the need for zero-waste. Finally, consumers mentioned only a small number of companies participating in zero-waste movement on SNS, indicating that the level of active involvement by such companies is much lower than that of consumers. Theoretical and educational implications as well as those for government policy-making are considered.

A Study on Rhythm Information Visualization Using Syllable of Digital Text (디지털 텍스트의 음절을 이용한 운율 정보 시각화에 관한 연구)

  • Park, seon-hee;Lee, jae-joong;Park, jin-wan
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2009.05a
    • /
    • pp.120-126
    • /
    • 2009
  • As the information age grows rapidly, the amount of digital texts has been increasing as well. It has brought an increasing of visualization case in order to figure out lots of digital texts. Existing visualized design of digital text is merely concentrating on figuration of subject word through adoption of stemming algorithm and word frequency extraction, prominence of meaning of text, and connection in between sentences. So it is a fact that expression of rhythm that can visualize sentimental feeing of digital text was insufficient. Syllable is a phoneme unit that can express rhythm more efficiently. In sentences, syllable is a most basic pronunciation unit in pronouncing word, phase and sentence. On this basis, accent, intonation, length of rhythm factor and others are based on syllable. Sonority, which is most closely associated with definitions of syllable, is expressed through air flow of igniting lung and acoustic energy that is specified kinetic energy into sonority. Seen from this perspective, this study examines phonologic definition and characteristics based on syllable, which is properties of digital text, and research the way to visualize rhythm through diagram. After converting digital text into phonetic symbol by the experiment, rhythm information are visualized into images using degree of resonance, which was started from rhythm in all languages, and using syllable establishment of digital text. By visualizing syllable information, it provides syllable information of digital text and express sentiment of digital text through diagram to assist user's understanding by systematic formula. Therefore, this study is aimed at planning for easy understanding of text's rhythm and realizing visualization of digital text.

  • PDF

Formulating Strategies from Consumer Opinion Analysis on AI Kids Phone using Text Mining (AI 키즈폰의 소비자리뷰 분석을 통한 제품개선 전략에 대한 연구)

  • Kim, Dohun;Cha, Kyungjin
    • The Journal of Society for e-Business Studies
    • /
    • v.24 no.2
    • /
    • pp.71-89
    • /
    • 2019
  • In order to come up with satisfying product and improvement, firms use traditional marketing research methods to obtain consumers' opinions and further try to reflect them. Recently, gathering data from consumer communication platforms like internet and SNS has become popular methods. Meanwhile, with the development of information technology, mobile companies are launching new digital products for children to protect them from harmful content and provide them with necessary functions and information. Among these digital products, Kids Phone, which is a wearable device with safe functions that enable parents to learn childern's location. Kids phone is relatively cheaper and simpler than smartphone but it is noted that there are several problems such as some useless functions and frequent breakdowns. This study analyzes the reviews of Kids phones from domestic mobile companies, identifies the characteristics, strengths and weaknesses of the products, proposes improvement methods strategies for devices and services through SNS consumer analysis. In order to do that customer review data from online shopping malls was gathered and was further analyzed through text mining methods such as TF/IDF, Sentiment Analysis, and network analysis. Customer review data was gathered through crawling Online shopping Mall and Naver Blog/$Caf\acute{e}$. Data analysis and visualization was done using 'R', 'Textom', and 'Python'. Such analysis allowed us to figure out main issues and recent trends regarding kids phones and to suggest possible service improvement strategies based on sentiment analysis.

Consumers' perceptions of dietary supplements before and after the COVID-19 pandemic based on big data

  • Eunjung Lee;Hyo Sun Jung;Jin A Jang
    • Journal of Nutrition and Health
    • /
    • v.56 no.3
    • /
    • pp.330-347
    • /
    • 2023
  • Purpose: This study identified words closely associated with the keyword "dietary supplement" (DS) using big data in Korean social media and investigated consumer perceptions and trends related to DSs before (2019) and after the coronavirus disease 2019 (COVID-19) pandemic (2021). Methods: A total of 37,313 keywords were found for the 2019 period, and 35,336 keywords were found for the 2021 period using blogs and cafes on Daum and Naver. Results were derived by text mining, semantic networking, network visualization analysis, and sentiment analysis. Results: The DS-related keywords that frequently appeared before and after COVID-19 were "recommend", "vitamin", "health", "children", "multiple", and "lactobacillus". "Calcium", "lutein", "skin", and "immunity" also had high frequency-inverse document frequency (TF-IDF) values. These keywords imply a keen interest in DSs among Korean consumers. Big data results also reflected social phenomena related to DSs; for example, "baby" and "pregnant woman" had lower TD-IDF values after the pandemic, suggesting lower marriage and birth rates but higher values for "joint", indicating reduced physical activity. A network centered on vitamins and health care was produced by semantic network analysis in 2019. In 2021, values were highest for deficiency and need, indicating that individuals were searching for DSs after the COVID-19 pandemic due to a lack an awareness of the need for adequate nutrient intake. Before the pandemic, DSs and vitamins were associated with healthcare and life cycle-related topics, such as pregnancy, but after the COVID-19 pandemic, consumer interests changed to disease prevention and treatment. Conclusion: This study provides meaningful clues regarding consumer perceptions and trends related to DSs before and after the COVID-19 pandemic and fundamental data on the effect of the pandemic on consumer interest in dietary supplements.

A Study of 'Emotion Trigger' by Text Mining Techniques (텍스트 마이닝을 이용한 감정 유발 요인 'Emotion Trigger'에 관한 연구)

  • An, Juyoung;Bae, Junghwan;Han, Namgi;Song, Min
    • Journal of Intelligence and Information Systems
    • /
    • v.21 no.2
    • /
    • pp.69-92
    • /
    • 2015
  • The explosion of social media data has led to apply text-mining techniques to analyze big social media data in a more rigorous manner. Even if social media text analysis algorithms were improved, previous approaches to social media text analysis have some limitations. In the field of sentiment analysis of social media written in Korean, there are two typical approaches. One is the linguistic approach using machine learning, which is the most common approach. Some studies have been conducted by adding grammatical factors to feature sets for training classification model. The other approach adopts the semantic analysis method to sentiment analysis, but this approach is mainly applied to English texts. To overcome these limitations, this study applies the Word2Vec algorithm which is an extension of the neural network algorithms to deal with more extensive semantic features that were underestimated in existing sentiment analysis. The result from adopting the Word2Vec algorithm is compared to the result from co-occurrence analysis to identify the difference between two approaches. The results show that the distribution related word extracted by Word2Vec algorithm in that the words represent some emotion about the keyword used are three times more than extracted by co-occurrence analysis. The reason of the difference between two results comes from Word2Vec's semantic features vectorization. Therefore, it is possible to say that Word2Vec algorithm is able to catch the hidden related words which have not been found in traditional analysis. In addition, Part Of Speech (POS) tagging for Korean is used to detect adjective as "emotional word" in Korean. In addition, the emotion words extracted from the text are converted into word vector by the Word2Vec algorithm to find related words. Among these related words, noun words are selected because each word of them would have causal relationship with "emotional word" in the sentence. The process of extracting these trigger factor of emotional word is named "Emotion Trigger" in this study. As a case study, the datasets used in the study are collected by searching using three keywords: professor, prosecutor, and doctor in that these keywords contain rich public emotion and opinion. Advanced data collecting was conducted to select secondary keywords for data gathering. The secondary keywords for each keyword used to gather the data to be used in actual analysis are followed: Professor (sexual assault, misappropriation of research money, recruitment irregularities, polifessor), Doctor (Shin hae-chul sky hospital, drinking and plastic surgery, rebate) Prosecutor (lewd behavior, sponsor). The size of the text data is about to 100,000(Professor: 25720, Doctor: 35110, Prosecutor: 43225) and the data are gathered from news, blog, and twitter to reflect various level of public emotion into text data analysis. As a visualization method, Gephi (http://gephi.github.io) was used and every program used in text processing and analysis are java coding. The contributions of this study are as follows: First, different approaches for sentiment analysis are integrated to overcome the limitations of existing approaches. Secondly, finding Emotion Trigger can detect the hidden connections to public emotion which existing method cannot detect. Finally, the approach used in this study could be generalized regardless of types of text data. The limitation of this study is that it is hard to say the word extracted by Emotion Trigger processing has significantly causal relationship with emotional word in a sentence. The future study will be conducted to clarify the causal relationship between emotional words and the words extracted by Emotion Trigger by comparing with the relationships manually tagged. Furthermore, the text data used in Emotion Trigger are twitter, so the data have a number of distinct features which we did not deal with in this study. These features will be considered in further study.

The Study on the Lighting Directing of Animation - Focusing on the Emotional Vocabulary that Appears in the 3D Animation Scene (애니메이션의 조명 연출에 대한 연구 - 3D 애니메이션 장면에서 나타나는 정서적 어휘를 중심으로)

  • Lee, Jong Han
    • Cartoon and Animation Studies
    • /
    • s.36
    • /
    • pp.349-374
    • /
    • 2014
  • The light is the language. Directors have to describe the scene component effectively his intention to configure the scene as an appropriately. After this act of the character, the layout of the props and scene lights will enter to the scene components. Those things help to audiences can understand narrative of work and emotion that producer want to send. Expressing their emotions especially using the lights by adjusting the colors and contrast makes audience to concentrate on work and understand naturally. This lighting technique clearly appears on early year theaters stage of England and Rembrandt's paintings. Properly dividing and controlling the lights dramatically increases the beauty of the work elements to express a variety of emotions such as worries and fear. Therefore, it can be evolve depending on director's intent of using lights on his work. Lights can increase involvement of human emotion through basic features that cognition of object, visualization of space-time and by artistic method in the product. This study will examine the role and how to use lighting to express the proper sentiment based on the narrative of the work. Making research named "Lighting Research of 3D animated film which applying light features to express emotion" previous study and have to combine emotional vocabulary and emotion-based theory for classifying the emotional language that can be applied on 3D animation. And choosing most emotional scene from 3D animation for analyze how they used lighting to expressing emotions. Directors trying to show up about the light role through light method that matched perfectly with an emotional language. Expecting this research work of directing 3D animations light for expressing emotional feelings will be continue successfully.