KSII Transactions on Internet and Information Systems (TIIS)
/
v.9
no.1
/
pp.391-406
/
2015
Social media have emerged as new communication channels between consumers and companies that generate a large volume of unstructured text data. This social media content, which contains consumers' opinions and interests, is recognized as valuable material from which businesses can mine useful information; consequently, many researchers have reported on opinion-mining frameworks, methods, techniques, and tools for business intelligence over various industries. These studies sometimes focused on how to use opinion mining in business fields or emphasized methods of analyzing content to achieve results that are more accurate. They also considered how to visualize the results to ensure easier understanding. However, we found that such approaches are often technically complex and insufficiently user-friendly to help with business decisions and planning. Therefore, in this study we attempt to formulate a more comprehensive and practical methodology to conduct social media opinion mining and apply our methodology to a case study of the oldest instant noodle product in Korea. We also present graphical tools and visualized outputs that include volume and sentiment graphs, time-series graphs, a topic word cloud, a heat map, and a valence tree map with a classification. Our resources are from public-domain social media content such as blogs, forum messages, and news articles that we analyze with natural language processing, statistics, and graphics packages in the freeware R project environment. We believe our methodology and visualization outputs can provide a practical and reliable guide for immediate use, not just in the food industry but other industries as well.
Park, In-Hyoung;Park, You-min;Lee, Cheol;Sun, Jung-eun;Hu, Wendie;Chung, Jae-Eun
Human Ecology Research
/
v.60
no.1
/
pp.21-38
/
2022
This study uses text mining compares and contrasts consumers' social media discourses on dietary related zero-waste movement before and after COVID-19. The results indicate that the amount of buzz on social networks for the zero- waste movement has been increasing after COVID-19. Additionally, the results of frequency analysis and topic modeling revealed that subjects associated with zero-waste movement were more diversified after COVID-19. Although the results of a sentiment analysis and word cloud visualization confirmed that consumers' positive responses toward the zero-waste have been increasing, they also revealed a need to educate and encourage those who are still not aware of the need for zero-waste. Finally, consumers mentioned only a small number of companies participating in zero-waste movement on SNS, indicating that the level of active involvement by such companies is much lower than that of consumers. Theoretical and educational implications as well as those for government policy-making are considered.
Proceedings of the Korea Contents Association Conference
/
2009.05a
/
pp.120-126
/
2009
As the information age grows rapidly, the amount of digital texts has been increasing as well. It has brought an increasing of visualization case in order to figure out lots of digital texts. Existing visualized design of digital text is merely concentrating on figuration of subject word through adoption of stemming algorithm and word frequency extraction, prominence of meaning of text, and connection in between sentences. So it is a fact that expression of rhythm that can visualize sentimental feeing of digital text was insufficient. Syllable is a phoneme unit that can express rhythm more efficiently. In sentences, syllable is a most basic pronunciation unit in pronouncing word, phase and sentence. On this basis, accent, intonation, length of rhythm factor and others are based on syllable. Sonority, which is most closely associated with definitions of syllable, is expressed through air flow of igniting lung and acoustic energy that is specified kinetic energy into sonority. Seen from this perspective, this study examines phonologic definition and characteristics based on syllable, which is properties of digital text, and research the way to visualize rhythm through diagram. After converting digital text into phonetic symbol by the experiment, rhythm information are visualized into images using degree of resonance, which was started from rhythm in all languages, and using syllable establishment of digital text. By visualizing syllable information, it provides syllable information of digital text and express sentiment of digital text through diagram to assist user's understanding by systematic formula. Therefore, this study is aimed at planning for easy understanding of text's rhythm and realizing visualization of digital text.
In order to come up with satisfying product and improvement, firms use traditional marketing research methods to obtain consumers' opinions and further try to reflect them. Recently, gathering data from consumer communication platforms like internet and SNS has become popular methods. Meanwhile, with the development of information technology, mobile companies are launching new digital products for children to protect them from harmful content and provide them with necessary functions and information. Among these digital products, Kids Phone, which is a wearable device with safe functions that enable parents to learn childern's location. Kids phone is relatively cheaper and simpler than smartphone but it is noted that there are several problems such as some useless functions and frequent breakdowns. This study analyzes the reviews of Kids phones from domestic mobile companies, identifies the characteristics, strengths and weaknesses of the products, proposes improvement methods strategies for devices and services through SNS consumer analysis. In order to do that customer review data from online shopping malls was gathered and was further analyzed through text mining methods such as TF/IDF, Sentiment Analysis, and network analysis. Customer review data was gathered through crawling Online shopping Mall and Naver Blog/$Caf\acute{e}$. Data analysis and visualization was done using 'R', 'Textom', and 'Python'. Such analysis allowed us to figure out main issues and recent trends regarding kids phones and to suggest possible service improvement strategies based on sentiment analysis.
Purpose: This study identified words closely associated with the keyword "dietary supplement" (DS) using big data in Korean social media and investigated consumer perceptions and trends related to DSs before (2019) and after the coronavirus disease 2019 (COVID-19) pandemic (2021). Methods: A total of 37,313 keywords were found for the 2019 period, and 35,336 keywords were found for the 2021 period using blogs and cafes on Daum and Naver. Results were derived by text mining, semantic networking, network visualization analysis, and sentiment analysis. Results: The DS-related keywords that frequently appeared before and after COVID-19 were "recommend", "vitamin", "health", "children", "multiple", and "lactobacillus". "Calcium", "lutein", "skin", and "immunity" also had high frequency-inverse document frequency (TF-IDF) values. These keywords imply a keen interest in DSs among Korean consumers. Big data results also reflected social phenomena related to DSs; for example, "baby" and "pregnant woman" had lower TD-IDF values after the pandemic, suggesting lower marriage and birth rates but higher values for "joint", indicating reduced physical activity. A network centered on vitamins and health care was produced by semantic network analysis in 2019. In 2021, values were highest for deficiency and need, indicating that individuals were searching for DSs after the COVID-19 pandemic due to a lack an awareness of the need for adequate nutrient intake. Before the pandemic, DSs and vitamins were associated with healthcare and life cycle-related topics, such as pregnancy, but after the COVID-19 pandemic, consumer interests changed to disease prevention and treatment. Conclusion: This study provides meaningful clues regarding consumer perceptions and trends related to DSs before and after the COVID-19 pandemic and fundamental data on the effect of the pandemic on consumer interest in dietary supplements.
The explosion of social media data has led to apply text-mining techniques to analyze big social media data in a more rigorous manner. Even if social media text analysis algorithms were improved, previous approaches to social media text analysis have some limitations. In the field of sentiment analysis of social media written in Korean, there are two typical approaches. One is the linguistic approach using machine learning, which is the most common approach. Some studies have been conducted by adding grammatical factors to feature sets for training classification model. The other approach adopts the semantic analysis method to sentiment analysis, but this approach is mainly applied to English texts. To overcome these limitations, this study applies the Word2Vec algorithm which is an extension of the neural network algorithms to deal with more extensive semantic features that were underestimated in existing sentiment analysis. The result from adopting the Word2Vec algorithm is compared to the result from co-occurrence analysis to identify the difference between two approaches. The results show that the distribution related word extracted by Word2Vec algorithm in that the words represent some emotion about the keyword used are three times more than extracted by co-occurrence analysis. The reason of the difference between two results comes from Word2Vec's semantic features vectorization. Therefore, it is possible to say that Word2Vec algorithm is able to catch the hidden related words which have not been found in traditional analysis. In addition, Part Of Speech (POS) tagging for Korean is used to detect adjective as "emotional word" in Korean. In addition, the emotion words extracted from the text are converted into word vector by the Word2Vec algorithm to find related words. Among these related words, noun words are selected because each word of them would have causal relationship with "emotional word" in the sentence. The process of extracting these trigger factor of emotional word is named "Emotion Trigger" in this study. As a case study, the datasets used in the study are collected by searching using three keywords: professor, prosecutor, and doctor in that these keywords contain rich public emotion and opinion. Advanced data collecting was conducted to select secondary keywords for data gathering. The secondary keywords for each keyword used to gather the data to be used in actual analysis are followed: Professor (sexual assault, misappropriation of research money, recruitment irregularities, polifessor), Doctor (Shin hae-chul sky hospital, drinking and plastic surgery, rebate) Prosecutor (lewd behavior, sponsor). The size of the text data is about to 100,000(Professor: 25720, Doctor: 35110, Prosecutor: 43225) and the data are gathered from news, blog, and twitter to reflect various level of public emotion into text data analysis. As a visualization method, Gephi (http://gephi.github.io) was used and every program used in text processing and analysis are java coding. The contributions of this study are as follows: First, different approaches for sentiment analysis are integrated to overcome the limitations of existing approaches. Secondly, finding Emotion Trigger can detect the hidden connections to public emotion which existing method cannot detect. Finally, the approach used in this study could be generalized regardless of types of text data. The limitation of this study is that it is hard to say the word extracted by Emotion Trigger processing has significantly causal relationship with emotional word in a sentence. The future study will be conducted to clarify the causal relationship between emotional words and the words extracted by Emotion Trigger by comparing with the relationships manually tagged. Furthermore, the text data used in Emotion Trigger are twitter, so the data have a number of distinct features which we did not deal with in this study. These features will be considered in further study.
The light is the language. Directors have to describe the scene component effectively his intention to configure the scene as an appropriately. After this act of the character, the layout of the props and scene lights will enter to the scene components. Those things help to audiences can understand narrative of work and emotion that producer want to send. Expressing their emotions especially using the lights by adjusting the colors and contrast makes audience to concentrate on work and understand naturally. This lighting technique clearly appears on early year theaters stage of England and Rembrandt's paintings. Properly dividing and controlling the lights dramatically increases the beauty of the work elements to express a variety of emotions such as worries and fear. Therefore, it can be evolve depending on director's intent of using lights on his work. Lights can increase involvement of human emotion through basic features that cognition of object, visualization of space-time and by artistic method in the product. This study will examine the role and how to use lighting to express the proper sentiment based on the narrative of the work. Making research named "Lighting Research of 3D animated film which applying light features to express emotion" previous study and have to combine emotional vocabulary and emotion-based theory for classifying the emotional language that can be applied on 3D animation. And choosing most emotional scene from 3D animation for analyze how they used lighting to expressing emotions. Directors trying to show up about the light role through light method that matched perfectly with an emotional language. Expecting this research work of directing 3D animations light for expressing emotional feelings will be continue successfully.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.