• Title/Summary/Keyword: Sentiment Classification

Search Result 179, Processing Time 0.029 seconds

Intensified Sentiment Analysis of Customer Product Reviews Using Acoustic and Textual Features

  • Govindaraj, Sureshkumar;Gopalakrishnan, Kumaravelan
    • ETRI Journal
    • /
    • v.38 no.3
    • /
    • pp.494-501
    • /
    • 2016
  • Sentiment analysis incorporates natural language processing and artificial intelligence and has evolved as an important research area. Sentiment analysis on product reviews has been used in widespread applications to improve customer retention and business processes. In this paper, we propose a method for performing an intensified sentiment analysis on customer product reviews. The method involves the extraction of two feature sets from each of the given customer product reviews, a set of acoustic features (representing emotions) and a set of lexical features (representing sentiments). These sets are then combined and used in a supervised classifier to predict the sentiments of customers. We use an audio speech dataset prepared from Amazon product reviews and downloaded from the YouTube portal for the purposes of our experimental evaluations.

Relationship between Result of Sentiment Analysis and User Satisfaction -The case of Korean Meteorological Administration- (감성분석 결과와 사용자 만족도와의 관계 -기상청 사례를 중심으로-)

  • Kim, In-Gyum;Kim, Hye-Min;Lim, Byunghwan;Lee, Ki-Kwang
    • The Journal of the Korea Contents Association
    • /
    • v.16 no.10
    • /
    • pp.393-402
    • /
    • 2016
  • To compensate for limited the satisfaction survey currently conducted by Korea Metrological Administration (KMA), a sentiment analysis via a social networking service (SNS) can be utilized. From 2011 to 2014, with the sentiment analysis, Twitter who had commented 'KMA' had collected, then, using $Na{\ddot{i}}ve$ Bayes classification, we were classified into three sentiments: positive, negative, and neutral sentiments. An additional dictionary was made with morphemes appeared only in the positive, negative, and neutral sentiments of basic $Na{\ddot{i}}ve$ Bayes classification, thus the accuracy of sentiment analysis was improved. As a result, when sentiments were classified with a basic $Na{\ddot{i}}ve$ Bayes classification, the training data were reproduced about 75% accuracy rate. Whereas, when classifying with the additional dictionary, it showed 97% accuracy rate. When using the additional dictionary, sentiments of verification data was classified with about 75% accuracy rate. Lower classification accuracy rate would be improved by not only a qualified dictionary that has increased amount of training data, including diverse keywords related to weather, but continuous update of the dictionary. Meanwhile, contrary to the sentiment analysis based on dictionary definition of individual vocabulary, if sentiments are classified into meaning of sentence, increased rate of negative sentiment and change in satisfaction could be explained. Therefore, the sentiment analysis via SNS would be considered as useful tool for complementing surveys in the future.

A Study on the Psychological Counseling AI Chatbot System based on Sentiment Analysis (감정분석 기반 심리상담 AI 챗봇 시스템에 대한 연구)

  • An, Se Hun;Jeong, Ok Ran
    • Journal of Information Technology Services
    • /
    • v.20 no.3
    • /
    • pp.75-86
    • /
    • 2021
  • As artificial intelligence is actively studied, chatbot systems are being applied to various fields. In particular, many chatbot systems for psychological counseling have been studied that can comfort modern people. However, while most psychological counseling chatbots are studied as rule-base and deep learning-based chatbots, there are large limitations for each chatbot. To overcome the limitations of psychological counseling using such chatbots, we proposes a novel psychological counseling AI chatbot system. The proposed system consists of a GPT-2 model that generates output sentence for Korean input sentences and an Electra model that serves as sentiment analysis and anxiety cause classification, which can be provided with psychological tests and collective intelligence functions. At the same time as deep learning-based chatbots and conversations take place, sentiment analysis of input sentences simultaneously recognizes user's emotions and presents psychological tests and collective intelligence solutions to solve the limitations of psychological counseling that can only be done with chatbots. Since the role of sentiment analysis and anxiety cause classification, which are the links of each function, is important for the progression of the proposed system, we experiment the performance of those parts. We verify the novelty and accuracy of the proposed system. It also shows that the AI chatbot system can perform counseling excellently.

Burmese Sentiment Analysis Based on Transfer Learning

  • Mao, Cunli;Man, Zhibo;Yu, Zhengtao;Wu, Xia;Liang, Haoyuan
    • Journal of Information Processing Systems
    • /
    • v.18 no.4
    • /
    • pp.535-548
    • /
    • 2022
  • Using a rich resource language to classify sentiments in a language with few resources is a popular subject of research in natural language processing. Burmese is a low-resource language. In light of the scarcity of labeled training data for sentiment classification in Burmese, in this study, we propose a method of transfer learning for sentiment analysis of a language that uses the feature transfer technique on sentiments in English. This method generates a cross-language word-embedding representation of Burmese vocabulary to map Burmese text to the semantic space of English text. A model to classify sentiments in English is then pre-trained using a convolutional neural network and an attention mechanism, where the network shares the model for sentiment analysis of English. The parameters of the network layer are used to learn the cross-language features of the sentiments, which are then transferred to the model to classify sentiments in Burmese. Finally, the model was tuned using the labeled Burmese data. The results of the experiments show that the proposed method can significantly improve the classification of sentiments in Burmese compared to a model trained using only a Burmese corpus.

BERT & Hierarchical Graph Convolution Neural Network based Emotion Analysis Model (BERT 및 계층 그래프 컨볼루션 신경망 기반 감성분석 모델)

  • Zhang, Junjun;Shin, Jongho;An, Suvin;Park, Taeyoung;Noh, Giseop
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2022.10a
    • /
    • pp.34-36
    • /
    • 2022
  • In the existing text sentiment analysis models, the entire text is usually directly modeled as a whole, and the hierarchical relationship between text contents is less considered. However, in the practice of sentiment analysis, many texts are mixed with multiple emotions. If the semantic modeling of the whole is directly performed, it may increase the difficulty of the sentiment analysis model to judge the sentiment, making the model difficult to apply to the classification of mixed-sentiment sentences. Therefore, this paper proposes a sentiment analysis model BHGCN that considers the text hierarchy. In this model, the output of hidden states of each layer of BERT is used as a node, and a directed connection is made between the upper and lower layers to construct a graph network with a semantic hierarchy. The model not only pays attention to layer-by-layer semantics, but also pays attention to hierarchical relationships. Suitable for handling mixed sentiment classification tasks. The comparative experimental results show that the BHGCN model exhibits obvious competitive advantages.

  • PDF

Sentiment Analysis of User-Generated Content on Drug Review Websites

  • Na, Jin-Cheon;Kyaing, Wai Yan Min
    • Journal of Information Science Theory and Practice
    • /
    • v.3 no.1
    • /
    • pp.6-23
    • /
    • 2015
  • This study develops an effective method for sentiment analysis of user-generated content on drug review websites, which has not been investigated extensively compared to other general domains, such as product reviews. A clause-level sentiment analysis algorithm is developed since each sentence can contain multiple clauses discussing multiple aspects of a drug. The method adopts a pure linguistic approach of computing the sentiment orientation (positive, negative, or neutral) of a clause from the prior sentiment scores assigned to words, taking into consideration the grammatical relations and semantic annotation (such as disorder terms) of words in the clause. Experiment results with 2,700 clauses show the effectiveness of the proposed approach, and it performed significantly better than the baseline approaches using a machine learning approach. Various challenging issues were identified and discussed through error analysis. The application of the proposed sentiment analysis approach will be useful not only for patients, but also for drug makers and clinicians to obtain valuable summaries of public opinion. Since sentiment analysis is domain specific, domain knowledge in drug reviews is incorporated into the sentiment analysis algorithm to provide more accurate analysis. In particular, MetaMap is used to map various health and medical terms (such as disease and drug names) to semantic types in the Unified Medical Language System (UMLS) Semantic Network.

Exploring the Sentiment Analysis of Electric Vehicles Social Media Data by Using Feature Selection Methods (속성선택방법을 이용한 전기자동차 소셜미디어 데이터의 감성분석 연구)

  • Costello, Francis Joseph;Lee, Kun Chang
    • Journal of Digital Convergence
    • /
    • v.18 no.2
    • /
    • pp.249-259
    • /
    • 2020
  • This study presents a recently obtained social media data set based upon the case study of Electric Vehicles (EV) and looks to implement a sentiment analysis (SA) in order to gain insights. This study uses two methods in order to fully analyze the public's sentiment on EVs. First, we implement a SA tool in which we used to extract the sentiment of comments. Next we labeled the data with these sentiments obtained and classified them. While performing classification we found the problem of dimensionality and also explored the use of feature selection (FS) models in order to reduce the data set's dimensionality. We found that the use of three FS models (Chi Squared, Information Gain and ReliefF) showed the most promising results when used alongside a logistic and support vector machines classification algorithm. the contributions of this paper are in providing an real-world example of social media text analytics which can be adopted in many other areas of research and business. Moving forward researchers can use the methodological approach in this paper to further refine and improve their own case uses in text analytics.

Sentiment Classification considering Korean Features (한국어 특성을 고려한 감성 분류)

  • Kim, Jung-Ho;Kim, Myung-Kyu;Cha, Myung-Hoon;In, Joo-Ho;Chae, Soo-Hoan
    • Science of Emotion and Sensibility
    • /
    • v.13 no.3
    • /
    • pp.449-458
    • /
    • 2010
  • As occasion demands to obtain efficient information from many documents and reviews on the Internet in many kinds of fields, automatic classification of opinion or thought is required. These automatic classification is called sentiment classification, which can be divided into three steps, such as subjective expression classification to extract subjective sentences from documents, sentiment classification to classify whether the polarity of documents is positive or negative, and strength classification to classify whether the documents have weak polarity or strong polarity. The latest studies in Opinion Mining have used N-gram words, lexical phrase pattern, and syntactic phrase pattern, etc. They have not used single word as feature for classification. Especially, patterns have been used frequently as feature because they are more flexible than N-gram words and are also more deterministic than single word. Theses studies are mainly concerned with English, other studies using patterns for Korean are still at an early stage. Although Korean has a slight difference in the meaning between predicates by the change of endings, which is 'Eomi' in Korean, of declinable words, the earlier studies about Korean opinion classification removed endings from predicates only to extract stems. Finally, this study introduces the earlier studies and methods using pattern for English, uses extracted sentimental patterns from Korean documents, and classifies polarities of these documents. In this paper, it also analyses the influence of the change of endings on performances of opinion classification.

  • PDF

A Study on Effective Sentiment Analysis through News Classification in Bankruptcy Prediction Model (부도예측 모형에서 뉴스 분류를 통한 효과적인 감성분석에 관한 연구)

  • Kim, Chansong;Shin, Minsoo
    • Journal of Information Technology Services
    • /
    • v.18 no.1
    • /
    • pp.187-200
    • /
    • 2019
  • Bankruptcy prediction model is an issue that has consistently interested in various fields. Recently, as technology for dealing with unstructured data has been developed, researches applied to business model prediction through text mining have been activated, and studies using this method are also increasing in bankruptcy prediction. Especially, it is actively trying to improve bankruptcy prediction by analyzing news data dealing with the external environment of the corporation. However, there has been a lack of study on which news is effective in bankruptcy prediction in real-time mass-produced news. The purpose of this study was to evaluate the high impact news on bankruptcy prediction. Therefore, we classify news according to type, collection period, and analyzed the impact on bankruptcy prediction based on sentiment analysis. As a result, artificial neural network was most effective among the algorithms used, and commentary news type was most effective in bankruptcy prediction. Column and straight type news were also significant, but photo type news was not significant. In the news by collection period, news for 4 months before the bankruptcy was most effective in bankruptcy prediction. In this study, we propose a news classification methods for sentiment analysis that is effective for bankruptcy prediction model.

Classification of ratings in online reviews (온라인 리뷰에서 평점의 분류)

  • Choi, Dongjun;Choi, Hosik;Park, Changyi
    • Journal of the Korean Data and Information Science Society
    • /
    • v.27 no.4
    • /
    • pp.845-854
    • /
    • 2016
  • Sentiment analysis or opinion mining is a technique of text mining employed to identify subjective information or opinions of an individual from documents in blogs, reviews, articles, or social networks. In the literature, only a problem of binary classification of ratings based on review texts in an online review. However, because there can be positive or negative reviews as well as neutral reviews, a multi-class classification will be more appropriate than the binary classification. To this end, we consider the multi-class classification of ratings based on review texts. In the preprocessing stage, we extract words related with ratings using chi-square statistic. Then the extracted words are used as input variables to multi-class classifiers such as support vector machines and proportional odds model to compare their predictive performances.