• Title/Summary/Keyword: Sentiment Classification

Search Result 179, Processing Time 0.02 seconds

Impact of Word Embedding Methods on Performance of Sentiment Analysis with Machine Learning Techniques

  • Park, Hoyeon;Kim, Kyoung-jae
    • Journal of the Korea Society of Computer and Information
    • /
    • v.25 no.8
    • /
    • pp.181-188
    • /
    • 2020
  • In this study, we propose a comparative study to confirm the impact of various word embedding techniques on the performance of sentiment analysis. Sentiment analysis is one of opinion mining techniques to identify and extract subjective information from text using natural language processing and can be used to classify the sentiment of product reviews or comments. Since sentiment can be classified as either positive or negative, it can be considered one of the general classification problems. For sentiment analysis, the text must be converted into a language that can be recognized by a computer. Therefore, text such as a word or document is transformed into a vector in natural language processing called word embedding. Various techniques, such as Bag of Words, TF-IDF, and Word2Vec are used as word embedding techniques. Until now, there have not been many studies on word embedding techniques suitable for emotional analysis. In this study, among various word embedding techniques, Bag of Words, TF-IDF, and Word2Vec are used to compare and analyze the performance of movie review sentiment analysis. The research data set for this study is the IMDB data set, which is widely used in text mining. As a result, it was found that the performance of TF-IDF and Bag of Words was superior to that of Word2Vec and TF-IDF performed better than Bag of Words, but the difference was not very significant.

Investigating the Performance of Bayesian-based Feature Selection and Classification Approach to Social Media Sentiment Analysis (소셜미디어 감성분석을 위한 베이지안 속성 선택과 분류에 대한 연구)

  • Chang Min Kang;Kyun Sun Eo;Kun Chang Lee
    • Information Systems Review
    • /
    • v.24 no.1
    • /
    • pp.1-19
    • /
    • 2022
  • Social media-based communication has become crucial part of our personal and official lives. Therefore, it is no surprise that social media sentiment analysis has emerged an important way of detecting potential customers' sentiment trends for all kinds of companies. However, social media sentiment analysis suffers from huge number of sentiment features obtained in the process of conducting the sentiment analysis. In this sense, this study proposes a novel method by using Bayesian Network. In this model MBFS (Markov Blanket-based Feature Selection) is used to reduce the number of sentiment features. To show the validity of our proposed model, we utilized online review data from Yelp, a famous social media about restaurant, bars, beauty salons evaluation and recommendation. We used a number of benchmarking feature selection methods like correlation-based feature selection, information gain, and gain ratio. A number of machine learning classifiers were also used for our validation tasks, like TAN, NBN, Sons & Spouses BN (Bayesian Network), Augmented Markov Blanket. Furthermore, we conducted Bayesian Network-based what-if analysis to see how the knowledge map between target node and related explanatory nodes could yield meaningful glimpse into what is going on in sentiments underlying the target dataset.

An Opinion Document Clustering Technique for Product Characterization (제품 특징화를 위한 오피니언 문서의 클러스터링 기법)

  • Chang, Jae-Young
    • The Journal of Society for e-Business Studies
    • /
    • v.19 no.2
    • /
    • pp.95-108
    • /
    • 2014
  • Opinion Mining is one of the application domains of text mining which extracting opinions from documents, and much researches are currently underway. Most of related researches focused on the sentiment classification which classifies the documents into positive/negative opinions. However, there is a little interest in extracting the features characterizing the individual product. In this paper, we propose the technique classifying the opinion documents according to the product features, and selecting the those features characterizing each product. In the proposed method, we utilize the document clustering technique and develope a new algorithm for evaluating the similarity between documents. In addition, through experiments, we prove the usefulness of proposed method.

A Method of Predicting Service Time Based on Voice of Customer Data (고객의 소리(VOC) 데이터를 활용한 서비스 처리 시간 예측방법)

  • Kim, Jeonghun;Kwon, Ohbyung
    • Journal of Information Technology Services
    • /
    • v.15 no.1
    • /
    • pp.197-210
    • /
    • 2016
  • With the advent of text analytics, VOC (Voice of Customer) data become an important resource which provides the managers and marketing practitioners with consumer's veiled opinion and requirements. In other words, making relevant use of VOC data potentially improves the customer responsiveness and satisfaction, each of which eventually improves business performance. However, unstructured data set such as customers' complaints in VOC data have seldom used in marketing practices such as predicting service time as an index of service quality. Because the VOC data which contains unstructured data is too complicated form. Also that needs convert unstructured data from structure data which difficult process. Hence, this study aims to propose a prediction model to improve the estimation accuracy of the level of customer satisfaction by combining unstructured from textmining with structured data features in VOC. Also the relationship between the unstructured, structured data and service processing time through the regression analysis. Text mining techniques, sentiment analysis, keyword extraction, classification algorithms, decision tree and multiple regression are considered and compared. For the experiment, we used actual VOC data in a company.

A Deep Learning Model for Extracting Consumer Sentiments using Recurrent Neural Network Techniques

  • Ranjan, Roop;Daniel, AK
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.8
    • /
    • pp.238-246
    • /
    • 2021
  • The rapid rise of the Internet and social media has resulted in a large number of text-based reviews being placed on sites such as social media. In the age of social media, utilizing machine learning technologies to analyze the emotional context of comments aids in the understanding of QoS for any product or service. The classification and analysis of user reviews aids in the improvement of QoS. (Quality of Services). Machine Learning algorithms have evolved into a powerful tool for analyzing user sentiment. Unlike traditional categorization models, which are based on a set of rules. In sentiment categorization, Bidirectional Long Short-Term Memory (BiLSTM) has shown significant results, and Convolution Neural Network (CNN) has shown promising results. Using convolutions and pooling layers, CNN can successfully extract local information. BiLSTM uses dual LSTM orientations to increase the amount of background knowledge available to deep learning models. The suggested hybrid model combines the benefits of these two deep learning-based algorithms. The data source for analysis and classification was user reviews of Indian Railway Services on Twitter. The suggested hybrid model uses the Keras Embedding technique as an input source. The suggested model takes in data and generates lower-dimensional characteristics that result in a categorization result. The suggested hybrid model's performance was compared using Keras and Word2Vec, and the proposed model showed a significant improvement in response with an accuracy of 95.19 percent.

Text Mining in Online Social Networks: A Systematic Review

  • Alhazmi, Huda N
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.3
    • /
    • pp.396-404
    • /
    • 2022
  • Online social networks contain a large amount of data that can be converted into valuable and insightful information. Text mining approaches allow exploring large-scale data efficiently. Therefore, this study reviews the recent literature on text mining in online social networks in a way that produces valid and valuable knowledge for further research. The review identifies text mining techniques used in social networking, the data used, tools, and the challenges. Research questions were formulated, then search strategy and selection criteria were defined, followed by the analysis of each paper to extract the data relevant to the research questions. The result shows that the most social media platforms used as a source of the data are Twitter and Facebook. The most common text mining technique were sentiment analysis and topic modeling. Classification and clustering were the most common approaches applied by the studies. The challenges include the need for processing with huge volumes of data, the noise, and the dynamic of the data. The study explores the recent development in text mining approaches in social networking by providing state and general view of work done in this research area.

Arabic Stock News Sentiments Using the Bidirectional Encoder Representations from Transformers Model

  • Eman Alasmari;Mohamed Hamdy;Khaled H. Alyoubi;Fahd Saleh Alotaibi
    • International Journal of Computer Science & Network Security
    • /
    • v.24 no.2
    • /
    • pp.113-123
    • /
    • 2024
  • Stock market news sentiment analysis (SA) aims to identify the attitudes of the news of the stock on the official platforms toward companies' stocks. It supports making the right decision in investing or analysts' evaluation. However, the research on Arabic SA is limited compared to that on English SA due to the complexity and limited corpora of the Arabic language. This paper develops a model of sentiment classification to predict the polarity of Arabic stock news in microblogs. Also, it aims to extract the reasons which lead to polarity categorization as the main economic causes or aspects based on semantic unity. Therefore, this paper presents an Arabic SA approach based on the logistic regression model and the Bidirectional Encoder Representations from Transformers (BERT) model. The proposed model is used to classify articles as positive, negative, or neutral. It was trained on the basis of data collected from an official Saudi stock market article platform that was later preprocessed and labeled. Moreover, the economic reasons for the articles based on semantic unit, divided into seven economic aspects to highlight the polarity of the articles, were investigated. The supervised BERT model obtained 88% article classification accuracy based on SA, and the unsupervised mean Word2Vec encoder obtained 80% economic-aspect clustering accuracy. Predicting polarity classification on the Arabic stock market news and their economic reasons would provide valuable benefits to the stock SA field.

A Semantic Orientation Prediction Method of Sentiment Features Based on the General and Domain-Dependent Characteristics (일반적, 영역 의존적 특성을 반영한 감정 자질의 의미지향성 추정 방법)

  • Hwang, Jaewon;Ko, Youngjoong
    • Annual Conference on Human and Language Technology
    • /
    • 2009.10a
    • /
    • pp.155-159
    • /
    • 2009
  • 본 논문은 한국어 문서 감정분류를 위한 중요한 어휘 자원인 감정자질(Sentiment Feature)의 의미지향성(Semantic Orientation) 추정을 위해 일반적인 특성과 영역(Domain) 의존적인 특성을 반영하여 한국어 문서 감정분류(Sentiment Classification)의 성능 향상을 얻을 수 있는 기법을 제안한다. 감정자질의 의미지 향성은 검색 엔진을 통해 추출한 각 감정 자질의 스니핏(Snippet)과 실험 말뭉치를 이용하여 추정할 수 있다. 검색 엔진을 통해 추출된 스니핏은 감정자질의 일반적인 특성을 반영하며, 실험 말뭉치는 분류하고자 하는 영역 의존적인 특성을 반영한다. 이렇게 얻어진 감정자질의 의미지향성 수치는 각 문장의 감정강도를 추정하기 위해 이용되며, 문장의 감정 강도의 값을 TF-IDF 가중치 기법에 접목하여 감정자질의 가중치를 책정한다. 최종적으로 학습 과정에서 긍정 문서에서는 긍정 감정자질, 부정 문서에서는 부정 감정자질을 대상으로 추가 가중치를 부여하여 학습하였다. 본 논문에서는 문서 분류에 뛰어난 성능을 보여주는 지지 벡터 기계(Support Vector Machine)를 사용하여 제안한 방법의 성능을 평가한다. 평가 결과, 일반적인 정보 검색에서 사용하는 내용어(Content Word) 기반의 자질을 사용한 경우보다 3.1%의 성능향상을 보였다.

  • PDF

Cross-Domain Text Sentiment Classification Method Based on the CNN-BiLSTM-TE Model

  • Zeng, Yuyang;Zhang, Ruirui;Yang, Liang;Song, Sujuan
    • Journal of Information Processing Systems
    • /
    • v.17 no.4
    • /
    • pp.818-833
    • /
    • 2021
  • To address the problems of low precision rate, insufficient feature extraction, and poor contextual ability in existing text sentiment analysis methods, a mixed model account of a CNN-BiLSTM-TE (convolutional neural network, bidirectional long short-term memory, and topic extraction) model was proposed. First, Chinese text data was converted into vectors through the method of transfer learning by Word2Vec. Second, local features were extracted by the CNN model. Then, contextual information was extracted by the BiLSTM neural network and the emotional tendency was obtained using softmax. Finally, topics were extracted by the term frequency-inverse document frequency and K-means. Compared with the CNN, BiLSTM, and gate recurrent unit (GRU) models, the CNN-BiLSTM-TE model's F1-score was higher than other models by 0.0147, 0.006, and 0.0052, respectively. Then compared with CNN-LSTM, LSTM-CNN, and BiLSTM-CNN models, the F1-score was higher by 0.0071, 0.0038, and 0.0049, respectively. Experimental results showed that the CNN-BiLSTM-TE model can effectively improve various indicators in application. Lastly, performed scalability verification through a takeaway dataset, which has great value in practical applications.

Sentiment Analysis of COVID-19 Tweets: Impact of Pre-processing Step

  • Ayadi, Rami;Shahin, Osama R.;Ghorbel, Osama;Alanazi, Rayan;Saidi, Anouar
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.3
    • /
    • pp.206-211
    • /
    • 2021
  • Internet users are increasingly invited to express their opinions on various subjects in social networks, e-commerce sites, news sites, forums, etc. Much of this information, which describes feelings, becomes the subject of study in several areas of research such as: "Sensing opinions and analyzing feelings". It is the process of identifying the polarity of the feelings held in the opinions found in the interactions of Internet users on the web and classifying them as positive, negative, or neutral. In this article, we suggest the implementation of a sentiment analysis tool that has the role of detecting the polarity of opinions from people about COVID-19 extracted from social media (tweeter) in the Arabic language and to know the impact of the pre-processing phase on the opinions classification. The results show gaps in this area of research, first of all, the lack of resources when collecting data. Second, Arabic language is more complexes in pre-processing step, especially the dialects in the pre-treatment phase. But ultimately the results obtained are promising.