• 제목/요약/키워드: Sentence alignment

검색결과 23건 처리시간 0.023초

한영 병렬 코퍼스 구축을 위한 하이브리드 기반 문장 자동 정렬 방법 (A Hybrid Sentence Alignment Method for Building a Korean-English Parallel Corpus)

  • 박정열;차정원
    • 대한음성학회지:말소리
    • /
    • 제68권
    • /
    • pp.95-114
    • /
    • 2008
  • The recent growing popularity of statistical methods in machine translation requires much more large parallel corpora. A Korean-English parallel corpus, however, is not yet enoughly available, little research on this subject is being conducted. In this paper we present a hybrid method of aligning sentences for Korean-English parallel corpora. We use bilingual news wire web pages, reading comprehension materials for English learners, computer-related technical documents and help files of localized software for building a Korean-English parallel corpus. Our hybrid method combines sentence-length based and word-correspondence based methods. We show the results of experimentation and evaluate them. Alignment results from using a full translation model are very encouraging, especially when we apply alignment results to an SMT system: 0.66% for BLEU score and 9.94% for NIST score improvement compared to the previous method.

  • PDF

English-Korean speech translation corpus (EnKoST-C): Construction procedure and evaluation results

  • Jeong-Uk Bang;Joon-Gyu Maeng;Jun Park;Seung Yun;Sang-Hun Kim
    • ETRI Journal
    • /
    • 제45권1호
    • /
    • pp.18-27
    • /
    • 2023
  • We present an English-Korean speech translation corpus, named EnKoST-C. End-to-end model training for speech translation tasks often suffers from a lack of parallel data, such as speech data in the source language and equivalent text data in the target language. Most available public speech translation corpora were developed for European languages, and there is currently no public corpus for English-Korean end-to-end speech translation. Thus, we created an EnKoST-C centered on TED Talks. In this process, we enhance the sentence alignment approach using the subtitle time information and bilingual sentence embedding information. As a result, we built a 559-h English-Korean speech translation corpus. The proposed sentence alignment approach showed excellent performance of 0.96 f-measure score. We also show the baseline performance of an English-Korean speech translation model trained with EnKoST-C. The EnKoST-C is freely available on a Korean government open data hub site.

단어 단위의 추정 정렬을 통한 영-한 대역어의 자동 추출 (An Automatic Extraction of English-Korean Bilingual Terms by Using Word-level Presumptive Alignment)

  • 이공주
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제2권6호
    • /
    • pp.433-442
    • /
    • 2013
  • 기계번역 시스템 구축에 가장 필수적인 요소는 번역하고자 하는 언어간의 단어쌍을 담고 있는 대역어 사전이다. 대역어 사전은 기계번역뿐만 아니라 서로 다른 언어간의 정보를 교환하는 모든 응용프로그램의 필수적인 지식원(knowledge source)이다. 본 연구에서는 문서 단위로 정렬된 병렬 코퍼스와 기본적인 대역어 사전을 이용하여 영-한 대역어를 자동으로 추출하는 방법에 대해 소개한다. 이 방법은 수집된 병렬 코퍼스의 크기에 영향을 받지 않는 방법이다. 문서 단위로 정렬된 병렬 코퍼스로부터 문장 단위의 정렬을 수행하고 다시 단어 단위의 정렬을 수행한 후, 정렬이 채 되지 않은 부분에 대해 추정 정렬을 수행한다. 추정 정렬에는 문장에서의 위치, 다른 단어와의 관계, 두 언어간의 언어적 정보등 다양한 정보가 사용된다. 이렇게 추정 정렬된 단어쌍으로부터 영-한 대역어를 추출할 수 있다. 약 1,000개로 구성된 병렬 코퍼스로부터 추출한 영-한 대역어는 71.7%의 정확도를 얻을 수 있었다.

문장 길이와 단어 정렬에 기반한 한-영 문장 정렬 (Korean-English Sentence Alignment Based on Sentence Length and Word Alignment)

  • 임재수;서희철;이상주;임해창
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2001년도 제13회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.302-309
    • /
    • 2001
  • 말뭉치를 통한 통계적인 자연 언어 처리에 관한 연구가 다국어 처리 분야에서도 활발히 진행되고 있는 가운데, 본 논문에서는 병렬 말뭉치 구축 및 활용의 기본이 되는 문장 정렬을 위한 효과적인 방법을 제안한다. 먼저, 기존의 문장 길이를 이용한 방법을 한-영 문장 정렬에 적용해 보고, 길이 정보만을 이용했을 때의 한계점을 지적한다. 그리고, 사전과 품사 대응 확률을 이용한 단어 정렬을 통하여, 길이 기반의 정렬 방식이 갖는 문제점을 보완할 수 있는 방법을 제시한다. 실험을 통하여 제안한 방법이 길이에 기반한 방법에 비하여 높은 성능을 나타냄을 알 수 있었다. 또한 한-영 문장 정렬에의 어휘 정보 활용에 있어서 문제가 될 수 있는 요소가 어떤 것들이 있는지 알아본다.

  • PDF

Mining Parallel Text from the Web based on Sentence Alignment

  • Li, Bo;Liu, Juan;Zhu, Huili
    • 한국언어정보학회:학술대회논문집
    • /
    • 한국언어정보학회 2007년도 정기학술대회
    • /
    • pp.285-292
    • /
    • 2007
  • The parallel corpus is an important resource in the research field of data-driven natural language processing, but there are only a few parallel corpora publicly available nowadays, mostly due to the high labor force needed to construct this kind of resource. A novel strategy is brought out to automatically fetch parallel text from the web in this paper, which may help to solve the problem of the lack of parallel corpora with high quality. The system we develop first downloads the web pages from certain hosts. Then candidate parallel page pairs are prepared from the page set based on the outer features of the web pages. The candidate page pairs are evaluated in the last step in which the sentences in the candidate web page pairs are extracted and aligned first, and then the similarity of the two web pages is evaluate based on the similarities of the aligned sentences. The experiments towards a multilingual web site show the satisfactory performance of the system.

  • PDF

The Use of MSVM and HMM for Sentence Alignment

  • Fattah, Mohamed Abdel
    • Journal of Information Processing Systems
    • /
    • 제8권2호
    • /
    • pp.301-314
    • /
    • 2012
  • In this paper, two new approaches to align English-Arabic sentences in bilingual parallel corpora based on the Multi-Class Support Vector Machine (MSVM) and the Hidden Markov Model (HMM) classifiers are presented. A feature vector is extracted from the text pair that is under consideration. This vector contains text features such as length, punctuation score, and cognate score values. A set of manually prepared training data was assigned to train the Multi-Class Support Vector Machine and Hidden Markov Model. Another set of data was used for testing. The results of the MSVM and HMM outperform the results of the length based approach. Moreover these new approaches are valid for any language pairs and are quite flexible since the feature vector may contain less, more, or different features, such as a lexical matching feature and Hanzi characters in Japanese-Chinese texts, than the ones used in the current research.

웹 번역문서 판별과 병렬 말뭉치 구축 (Judging Translated Web Document & Constructing Bilingual Corpus)

  • Jee-hyung, Kim;Yill-byung, Lee
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2004년도 가을 학술발표논문집 Vol.31 No.2 (1)
    • /
    • pp.787-789
    • /
    • 2004
  • People frequently feel the need of a general searching tool that frees from language barrier when they find information through the internet. Therefore, it is necessary to have a multilingual parallel corpus to search with a word that includes a search keyword and has a corresponding word in another language, Multilingual parallel corpus can be built and reused effectively through the several processes which are judgment of the web documents, sentence alignment and word alignment. To build a multilingual parallel corpus, multi-lingual dictionary should be constructed in each language and HTML should be simplified. And by understanding the meaning and the statistics of document structure, judgment on translated web documents will be made and the searched web pages will be aligned in sentence unit.

  • PDF

번역지원 시스템을 위한 유사 예문 검색 (Searching Similar Example Sentences for the Computer-Aided Translation System)

  • 김동주;김한우
    • 한국컴퓨터정보학회지
    • /
    • 제14권1호
    • /
    • pp.197-204
    • /
    • 2006
  • 본 논문에서는 번역 지원 시스템을 위한 유사문장 검색 알고리즘을 제안한다. 이 알고리즘은 Needleman- Wunsch 알고리즘에 기반을 두고 있으며, 단어의 비교를 위해 단어의 표면어 정보, 표제어 정보, 품사 정보 계층으로 된 다층 정보의 융합을 통해 유사도를 계산하고 정렬을 수행하게 된다. 제안하는 알고리즘은 전기통신 분야의 문장 데이터에 대해 매우 우수한 검색 정확률을 보였다.

  • PDF

Simultaneous neural machine translation with a reinforced attention mechanism

  • Lee, YoHan;Shin, JongHun;Kim, YoungKil
    • ETRI Journal
    • /
    • 제43권5호
    • /
    • pp.775-786
    • /
    • 2021
  • To translate in real time, a simultaneous translation system should determine when to stop reading source tokens and generate target tokens corresponding to a partial source sentence read up to that point. However, conventional attention-based neural machine translation (NMT) models cannot produce translations with adequate latency in online scenarios because they wait until a source sentence is completed to compute alignment between the source and target tokens. To address this issue, we propose a reinforced learning (RL)-based attention mechanism, the reinforced attention mechanism, which allows a neural translation model to jointly train the stopping criterion and a partial translation model. The proposed attention mechanism comprises two modules, one to ensure translation quality and the other to address latency. Different from previous RL-based simultaneous translation systems, which learn the stopping criterion from a fixed NMT model, the modules can be trained jointly with a novel reward function. In our experiments, the proposed model has better translation quality and comparable latency compared to previous models.