• Title/Summary/Keyword: Sensors of distance measurement

Search Result 177, Processing Time 0.032 seconds

Remote Measurement of a Distant Temperature and Current using Fiber Bragg Grating Sensors and Erbium-doped Fiber Ring Laser (어븀 첨가 광섬유형 링 레이저와 광섬유 격자 기반 센서를 이용한 원거리의 온도 및 전류 측정)

  • Sohn, Kyung-Rak;Shim, June-Hwan;Yang, Gyu-Sik
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.32 no.8
    • /
    • pp.1257-1262
    • /
    • 2008
  • A long-distance remote sensing of temperature and current based on a fiber Bragg grating (FBG) is proposed and demonstrated. The thermal expanding effect of the epoxy and the Er-doped fiber ring laser (EFRL) are applied to the sensor system to enhance the temperature and current sensitivity. An EFRL with a 5 km-single-mode fiber and a FBG shows a high extinction ratio of more than 60 dB and a low power fluctuation of less than 1 dB. The metal wires are used to supply the current to the sensors. When the NOA65 puts on the FBG as a thermal expanding material, the temperature and current sensitivity of the lasing wavelength shift are about $30\;pm/^{\circ}C$ and 3pm/mA, respectively. The proposed sensing scheme is useful for measurement of current or temperature at a distant object of more than several km.

Sensor Nodes Localization for Temperature Distribution Measurement System

  • Ohyama, Shinji;Alasiry, Ali Husein;Takayama, Junya;Kobayashi, Akira
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.1781-1786
    • /
    • 2005
  • In sensor network systems, all the nodes are interconnected and the positional information of each sensor is essential. To measure the temperature, position detection and communication functions are required. Many sensor nodes are distributed to a measurement field, and these sensors have three main functions: they measure the distance to the other nodes, the data of which are used to determine the position of each node; they communicate with other nodes; and they measure the temperature of each node. A novel range measurement method using the difference between light and sound propagation speed is proposed. The experimental results show the temperature distribution as measured with the aid of the determined positions. The positions of every node were calculated with a PC program. Eight nodes were manufactured and their fundamental functions were tested. The results of the range measurement method, which takes relatively accurate measurements, contribute significantly to the accuracy of the position determination. Future studies will focus on 3-D position determination and on the architecture of appropriate sensors and actuators.

  • PDF

A Study on Navigation Sensor System for Outdoor AGV Using AMR Sensors (AMR센서를 이용한 옥외용 AGV 주행센서 시스템에 관한 연구)

  • 김성호;박경섭
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.9 no.2
    • /
    • pp.140-144
    • /
    • 2003
  • A navigation sensor system for outdoor AGV(Automatic Guided Vehicle) using AMR(Anisotropic Magnetoresitive) sensors is described. We derive a formula of the position of AMR sensor using the measured magnetic field intensity due to permanent magnet with constant distance. The system consists of sensor board. sensor control board and position processing board. The sensor board measures magnetic field intensity, the sensor control board controls the measurement of six sensors sequentially, and the position processing board computes the accurate position of the permanent magnet using Least Square Method. We arranged six sensors at intervals of 30cm and measured the position of the permanent magnet moving at intervals of 30cm. Experimental results showed that we can get standard deviation of 2mm and error of &\pm&4.5mm at a height of 20cm from the permanent magnet.

Study on object detection and distance measurement functions with Kinect for windows version 2 (키넥트(Kinect) 윈도우 V2를 통한 사물감지 및 거리측정 기능에 관한 연구)

  • Niyonsaba, Eric;Jang, Jong-Wook
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.21 no.6
    • /
    • pp.1237-1242
    • /
    • 2017
  • Computer vision is coming more interesting with new imaging sensors' new capabilities which enable it to understand more its surrounding environment by imitating human vision system with artificial intelligence techniques. In this paper, we made experiments with Kinect camera, a new depth sensor for object detection and distance measurement functions, most essential functions in computer vision such as for unmanned or manned vehicles, robots, drones, etc. Therefore, Kinect camera is used here to estimate the position or the location of objects in its field of view and measure the distance from them to its depth sensor in an accuracy way by checking whether that the detected object is real object or not to reduce processing time ignoring pixels which are not part of real object. Tests showed promising results with such low-cost range sensor, Kinect camera which can be used for object detection and distance measurement which are fundamental functions in computer vision applications for further processing.

Improvement of Altitude Measurement Algorithm Based on Accelerometer for Holding Drone's Altitude (드론의 고도 유지를 위한 가속도센서 기반 고도 측정 알고리즘 개선)

  • Kim, Deok Yeop;Yun, Bo Ram;Lee, Sunghee;Lee, Woo Jin
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.6 no.10
    • /
    • pp.473-478
    • /
    • 2017
  • Drones require altitude holding in order to achieve flight objectives. The altitude holding of the drone is to repeat the operation of raising or lowering the drone according to the altitude information being measured in real-time. When the drones are maintained altitude, the drone's altitude will continue to change due to external factors such as imbalance in thrust due to difference in motor speed or wind. Therefore, in order to maintain the altitude of drone, we have to exactly measure the continuously changing altitude of the drone. Generally, the acceleration sensor is used for measuring the height of the drones. In this method, there is a problem that the measured value due to the integration error accumulates, and the drone's vibration is recognized by the altitude change. To solve the difficulty of the altitude measurement, commercial drones and existing studies are used for altitude measurement together with acceleration sensors by adding other sensors. However, most of the additional sensors have a limitation on the measurement distance and when the sensors are used together, the calculation processing of the sensor values increases and the altitude measurement speed is delayed. Therefore, it is necessary to accurately measure the altitude of the drone without considering additional sensors or devices. In this paper, we propose a measurement algorithm that improves general altitude measurement method using acceleration sensor and show that accuracy of altitude holding and altitude measurement is improved as a result of applying this algorithm.

Image Analysis for the Simultaneous Measurement of Underwater Flow Velocity and Direction (수중 유속 및 유향의 동시 측정을 위한 이미지 분석 기술에 관한 연구)

  • Dongmin Seo;Sangwoo Oh;Sung-Hoon Byun
    • Journal of Sensor Science and Technology
    • /
    • v.32 no.5
    • /
    • pp.307-312
    • /
    • 2023
  • To measure the flow velocity and direction in the near field of an unmanned underwater vehicle, an optical measurement unit containing an image sensor and a phosphor-integrated pillar that mimics the neuromasts of a fish was constructed. To analyze pillar movement, which changes with fluid flow, fluorescence image analysis was conducted. To analyze the flow velocity, mean force analysis, which could determine the relationship between the light intensity of a fluorescence image and an external force, and length-force analysis, which could determine the distance between the center points of two fluorescence images, were employed. Additionally, angle analysis that can determine the angles at which pixels of a digital image change was selected to analyze the direction of fluid flow. The flow velocity analysis results showed a high correlation of 0.977 between the external force and the light intensity of the fluorescence image, and in the case of direction analysis, omnidirectional movement could be analyzed. Through this study, we confirmed the effectiveness of optical flow sensors equipped with phosphor-integrated pillars.

Space and Time Sensor Fusion Using an Active Camera For Mobile Robot Navigation

  • Jin, Tae-Seok;Lee, Bong-Ki;Park, Soo-Min;Lee, Kwon-Soon;Lee, Jang-Myung
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2002.11a
    • /
    • pp.127-132
    • /
    • 2002
  • This paper proposes a sensor-fusion technique where the data sets for the previous moments are properly transformed and fused into the current data sets to enable accurate measurement, such as, distance to an obstacle and location of the service robot itself. In the conventional fusion schemes, the measurement is dependent on the current data sets. As the results, more of sensors are required to measure a certain physical parameter or to improve the accuracy of the measurement. However, in this approach, instead of adding more sensors to the system the temporal sequence of the data sets are stored and utilized for the measurement improvement. Theoretical basis is illustrated by examples and the effectiveness is proved through the simulations. finally, the new space and time sensor fusion (STSF) scheme is applied to the control of a mobile robot in an unstructured environment as well as structured environment.

  • PDF

Optical System Design and Experimental Demonstration of Long-range Reflective-type Precision Displacement Sensors (반사형 장거리 정밀 변위 감지기용 광학계 설계 및 측정)

  • Lim, Jae-In;Kim, Seung-Hwan;Lee, Seoung-Hun;Jeong, Hae-Won;Lee, Min-Hee;Kim, Shung-Whan;Kim, Kyong-Hon
    • Korean Journal of Optics and Photonics
    • /
    • v.22 no.3
    • /
    • pp.151-158
    • /
    • 2011
  • This paper reports design and demonstration of optical systems for reflective-type remote optical displacement sensors. Optical systems for light illumination sources and a position sensitive detector (PSD) for the displacement sensor were developed to sense displacement of bridges and instability of skyscrapers in a distance range from 10 m to 250 m to an accuracy better than a few mm. Performance of the optical systems was verified by composing a displacement sensor and by using it in measurement of displacement of a remote target with proper reflective optics depending on distance. The displacement sensor was composed of two LED light sources, each with collimating optics, and a two-dimensional PSD with telescope-type optics. Its displacement resolutions was measured to be 0.1 mm at a distance of 10 m and less than 3 mm at a distance of 250 m.

A Study on Analysis of Disturbance in VLC Transceiver Module Based on LED Communication (LED 조명통신용 드라이빙기술 기반 VLC 송수신기 모듈의 외란광 분석에 관한 연구)

  • Hong, Geun-Bin;Jang, Tae-Su;Kim, Tae-Hyung;Kim, Yong-Kab
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.7
    • /
    • pp.1391-1395
    • /
    • 2011
  • In this paper, would implement a transceiver for the visible light communication that based on wireless communication driving technology for LED illumination-based infrared ray communication, and measurement analyzed a design error rate of a transceiver variable rate has made about distance change -2.5m. The error rate measured a voltage variable along illuminate change between switchable circumstances, which has illuminated insight and outright. Each analyzed and measurement on the communication distance errors along the differences of disturbance light between night and days. The LED module has implemented for number of 6 through illumination dimming in case of different values. Also, implementation for the system module of a VLC transceiver based on the infrared sensors which used feedback outcome value has analyzed with error rate.

USAT(Ultrasonic Satellite System) for the Autonomous Mobile Robots Localization (무인 이동 로봇 위치추정을 위한 초음파 위성 시스템)

  • Lee, Dong-Hwal;Kim, Su-Yong;Yoon, Kang-Sup;Lee, Man-Hyung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.10
    • /
    • pp.956-961
    • /
    • 2007
  • We propose a new distance measurement method and local positioning system for the autonomous mobile robots localization. The distance measurement method is able to measure long-range distances with a high accuracy by using ultrasonic sensors. The time of flight of the ultrasonic waves include various noises is calculated accurately by the proposed period detecting method. The proposed local positioning system is composed of four ultrasonic transmitters and one ultrasonic receiver. The ultrasonic transmitter and receiver are separated but they are synchronized by RF (Radio frequency) signal. The proposed system using ultrasonic waves is represented as USAT(Ultrasonic Satellite System). USAT is able to estimate the position using the least square estimation. The experimental results show that the proposed local positioning system enables to estimate the absolute position precisely.