• Title/Summary/Keyword: Sensors

Search Result 13,167, Processing Time 0.034 seconds

Multi Cultivation Remote-Control System(MCRS) for Crops Through Characteristics of Multi-Safe Sensors (다중 안전센서 특성을 이용한 다중재배 원격제어장치)

  • Kim, Jong-Man;Cho, Ja-Yong;Seo, Beom-Seok
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.58 no.4
    • /
    • pp.619-622
    • /
    • 2009
  • Multi Cultivation Remote-control System(MCRS) for crpos through characteristics of multi-safe sensors was realized. It was carried out to investigate into the effect of LED Control with the physiological activity of crops(for examples, sprouts). We have also composed a Combined Automatic Control System possible for the control of temperature and humidity at the same time. The applied multi-safe sensors for measurement are blue, green, red, white, yellow leds and humidity sensors, web camera sensors under safe conditions for crops cultivation. And we producted the remote control OS using Linux and defined the characteristics of automatic control about sprouts.

Robust Map Building in Narrow Environments based on Combination of Sonar and IR Sensors (좁은 환경에서 초음파 및 적외선 센서를 융합한 강인한 지도작성)

  • Han, Hye-Min;Song, Jae-Bok
    • The Journal of Korea Robotics Society
    • /
    • v.6 no.1
    • /
    • pp.42-48
    • /
    • 2011
  • It is very important for a mobile robot to recognize and model its environments for navigation. However, the grid map constructed by sonar sensors cannot accurately represent the environment, especially the narrow environment, due to the angular uncertainty of sonar data. Therefore, we propose a map building scheme which combines sonar sensors and IR sensors. The maps built by sonar sensors and IR sensors are combined with different weights which are determined by the degree of translational and rotational motion of a robot. To increase the effectiveness of sensor fusion, we also propose optimal sensor arrangement through various experiments. The experimental results show that the proposed method can represent the environment such as narrow corridor and open door more accurately than conventional sonar sensor-based map building methods.

Geometry-Based Sensor Selection for Large Wireless Sensor Networks

  • Kim, Yoon Hak
    • Journal of information and communication convergence engineering
    • /
    • v.12 no.1
    • /
    • pp.8-13
    • /
    • 2014
  • We consider the sensor selection problem in large sensor networks where the goal is to find the best set of sensors that maximizes application objectives. Since sensor selection typically involves a large number of sensors, a low complexity should be maintained for practical applications. We propose a geometry-based sensor selection algorithm that utilizes only the information of sensor locations. In particular, by observing that sensors clustered together tend to have redundant information, we theorize that the redundancy is inversely proportional to the distance between sensors and seek to minimize this redundancy by searching for a set of sensors with the maximum average distance. To further reduce the computational complexity, we perform an iterative sequential search without losing optimality. We apply the proposed algorithm to an acoustic sensor network for source localization, and demonstrate using simulations that the proposed algorithm yields significant improvements in the localization performance with respect to the randomly generated sets of sensors.

THE RESEARCH ON SIMULATION METHOD FOR FAULT DETECT10N AND DIAGNOSIS IN SENSORS

  • Jia, Ming-Xing;Wang, Fu-Li
    • Proceedings of the Korea Society for Simulation Conference
    • /
    • 2001.10a
    • /
    • pp.301-305
    • /
    • 2001
  • A novel approach based on parameters estimation is presented far fault detection and diagnosis in sensors. Based on known precise parameter of normal working sensors system model is built from real laboratory inputs-outputs data, sequentially residual serial is obtained. Where decision-making rule of detection the fault is given via the use of beys theory, whilst a filter least-square computative algorithm for estimating fault parameters is given. The algorithm is a fast and accurate to calculate value of sensors faults when system model contains noise and sensors outputs contain measured noise. The method can solve both gain type and bias type fault in sensors. Simulated numerical example is included to demonstrate the use of the proposed approaches.

  • PDF

Self-activated Graphene Gas Sensors: A Mini Review

  • Kim, Taehoon;Eom, Tae Hoon;Jang, Ho Won
    • Journal of Sensor Science and Technology
    • /
    • v.29 no.4
    • /
    • pp.220-226
    • /
    • 2020
  • Graphene has been widely considered a promising candidate for high-quality chemical sensors, owing to its outstanding characteristics, such as sensitive gas adsorption at room temperature, high conductivity, high flexibility, and high transparency. However, the main drawback of a graphene-based gas sensor is the necessity for external heaters due to its slow response, incomplete recovery, and low selectivity at room temperature. Conventional heating devices have limitations such as large volume, thermal safety issues, and high power consumption. Moreover, metal-based heating systems cannot be applied to transparent and flexible devices. Thus, to solve this problem, a method of supplying the thermal energy necessary for gas sensing via the self-heating of graphene by utilizing its high carrier mobility has been studied. Herein, we provide a brief review of recent studies on self-activated graphene-based gas sensors. This review also describes various strategies for the self-activation of graphene sensors and the enhancement of their sensing properties.

Begavuir if Embedded intrinsic Fabry-Perot Optical Fiber Sensors in the Cement Concrete Structure (콘크리트에 매설된 구조물 유지관리용 Fabry-Perot 광섬유 센서의 거동)

  • Kim, Ki-Soo;Yoo, Jae-Wook;Lee, Seung-jae;Choi, Long;Lee, Woong-Jong;Kim, Jong-Woo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1996.04a
    • /
    • pp.295-299
    • /
    • 1996
  • Intrinsic Fabry-Perot Optical fiber sensors were embedded to tensile side of the 20cm$\times$20cm$\times$150cm cement concrete structures. The sensors were attached to the reinforcing steels and then, the cement concretes were applied. It took 30 days for curing the specimens. After that, the specimens were tested with 4-point bending method by universal testing machine. Strains were measured and recorded by the strain gauges embedded near optical fiber sensors. Output data of fiber sensor showed good linearity to the strain data from the strain gauges up 2000microstrain. The optical fiber sensors showed good response after yielding of structure while embedded metal film strain gauges did not show any response. We also specimens were broken down. In conclusion, the optical fiber sensors can be used as elements of health monitoring systems for cement concrete infra-structures.

  • PDF

A study on improving sensitivity to CO2 gases of Na solid electrolyte sensors adding CaO (CaO를 첨가한 Na고체전해질 센서의 CO2가스 감도향상에 관한 연구)

  • Kwak, Jong-Sig;Seo, Moo-Gyo;Choi, Soon-Don;Lee, Duk-Dong
    • Journal of Sensor Science and Technology
    • /
    • v.11 no.4
    • /
    • pp.218-223
    • /
    • 2002
  • NASICON sensors that the NASICON electrolytes with various CaO amounts were sintered at low temperature($900^{\circ}C$), were fabricated to improve $CO_2$ sensitivity and stability in sensing behaviors. The manufactured device was shown good sensing characteristics and stability of output electromotive force at $250^{\circ}C$, comparatively low operating temperature.

Development of Measuring Data System for Reinforced Concrete Beam Using Fiber Bragg Grating Sensors (광섬유 브래그 격자 센서를 이용한 R.C보의 계측 시스템 개발)

  • Kwak, Kae-Hwan;Jang, Hwa-Sup;Yang, Dong-Oun
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.05a
    • /
    • pp.47-50
    • /
    • 2005
  • Fiber Bragg Grating (FBG) Sensors as advanced measuring system are introduced and actively being applied to establish a smart monitoring system for bridge maintenance. This study develops FBG sensors and suggests a smart monitoring system. As for its first step, to verify the reliability of FBG sensors that developed, a specimen is made FBG sensors and electric sensor are attached. Then, Static test is conducted on the specimen on the specimens to check reliability. In addition, this study estimates the optimum deflection curve that converts strain curve data measured by FBG sensors into deflection.

  • PDF

Application to Gas Sensors by Electron Emission from Carbon Nanotube Emitters (탄소나노튜브 전극으로부터 전계방출을 이용한 가스센서의 응용)

  • Kim Seong-Jeen
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.19 no.5
    • /
    • pp.405-410
    • /
    • 2006
  • We fabricated gas sensors using carbon nanotubes (CNTs) as electron emitters for the purpose of detecting inert gases. By using the silicon-glass anodic bonding and glass patterning technologies with the typical Si process, we improved the compactness of the sensors and the reliability in process. The proposed sensor, based on, an electrical discharge theory known as Paschen's law in principle, works by figuring the variation of the discharge current depending on gas concentration. In the experiment, the initial breakdown characteristics were measured for air and Ar as a function of gas pressure. As the result, even though it should be realized that there are many other factors which have an effect on the breakdown of a gap, the sensors led to similar result as predicted by Paschen's law, and they showed a possibility as gas sensors which enable to detect the gas density ranged to the vacuum pressure from 1 to $10^{-3}$ Torr.

Development of Uniaxial Force Sensor Array for Tactile Sensation Using Fiber Bragg Gratings (광섬유 브래그 격자를 이용한 촉감감지용 단축 힘 센서 어레이 개발)

  • Heo, Jin-Seok;Lee, Jung-Ju
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.9 s.252
    • /
    • pp.1160-1165
    • /
    • 2006
  • In this paper, the 2-dimensional uniaxial force sensors array is introduced to detect the distributed force using fiber Bragg gratings. Uniaxial force transducer was designed to avoid the chirping and micro bending which degrade the performance of the sensor. The Brags wavelength shift of the sensor was estimated using the finite element analysis. Using this uniaxial force sensor, the uniaxial force sensors array $(3{\times}3)$ was fabricated, and the Performance of this sensors array was evaluated. The Presented sensors may has very simple configuration and its wiring is very simple compared with any other force sensors arrays.