• 제목/요약/키워드: Sensorless drives

검색결과 151건 처리시간 0.024초

A Novel Position Sensorless Speed Control Scheme for Permanent Magnet Synchronous Motor Drives

  • Won, Tae-Hyun;Lee, Man-Hyung
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • 제2B권3호
    • /
    • pp.125-132
    • /
    • 2002
  • PMSMS (permanent magnet synchronous motors) are widely used in industrial applications and home appliances because of their high torque to inertia ratio, superior power density, and high efficiency. For high performance control, accurate informations about the rotor position is essential. Sensorless algorithms have lately been studied extensively due to the high cost of position sensors and their low reliability in harsh environments. A novel position sensorless speed control for PMSMs uses indirect flux estimation and is presented in this paper. Rotor position and angular velocity are estimated by the proposed indirect flux estimation. Linkage flux and magnetic field flux are calculated by the voltage equations and the measured phase current without any integration. Instead of linkage flux calculation with integral operation, indirect flux and differential magnetic field are used for the estimation of rotor position. A proper rejection technique fur current noise effect in the calculation of differential linkage flux is introduced. The proposed indirect flux detecting method is free from the integral rounding error and linkage flux drift problem, because differential linkage flux can be calculated without any integral operation. Furthermore, electrical parameters of the PMSM can be measured by the proposed TCM (time compression method) for soft starting and precise estimation of rotor position. The position estimator uses accurate electrical parameters that are obtained from the proposed TCM at starting strategy. In the operating region, a proper compensation method fur temperature effect can compensate fir the estimation error from the variation of electrical parameters. The proposed novel position sensorless speed control scheme is verified by the experimental results.

직접 토크제어에 의한 속도검출기 없는 유도전동기의 고성능 제어시스템 (A High-Performance Speed Sensorless Control System for Induction Motor with Direct Torque Control)

  • 김민회;김남훈;백원식
    • 전기학회논문지P
    • /
    • 제51권1호
    • /
    • pp.18-27
    • /
    • 2002
  • This paper presents an implementation of digital high-performance speed sensorless control system of an induction motor drives with Direct Torque Control(DTC). The system consists of closed loop stator flux and torque observer, speed and torque estimators, two hysteresis controllers, an optimal switching look-up table, IGBT voltage source inverter, and TMS320C31 DSP controller board. The stator flux observer is based on the combined current and voltage model with stator flux feedback adaptive control for wide speed range. The speed estimator is using the model reference adaptive system(MRAS) with rotor flux linkages for speed turning signal estimation. In order to prove the suggested speed sensorless control algorithm, and to obtain a high-dynamic robust adaptive performance, we have some simulations and actual experiments at low(20rpm) and high(1000rpm) speed areas. The developed speed sensorless system are shown a good speed control response characteristic, and high performance features using 2.2[kW] general purposed induction motor.

직접 토크제어에 의한 리럭턴스 동기 전동기의 센서리스 제어시스템 (A Sensorless control system of Reluctance Synchronous Motor with Direct Torque Control)

  • 김민회;김남훈;백원식;김동희
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2001년도 추계학술대회 논문집 전기기기 및 에너지변환시스템부문
    • /
    • pp.161-164
    • /
    • 2001
  • This paper presents a digital speed sensorless control system for Reluctance Synchronous Motor (RSM) drives with direct torque control (DTC). The system consist of stator flux observer, rotor speed estimator, torque estimator two hysteresis band controllers, an optimal switching look-up table. IGBT voltage source inverter, and TMS320C31DSP controller by using fully integrated control software. The stator flux observer is based on the combined voltage and current model with stator flux feedback adaptive control that inputs are current and voltage sensing of motor terminal with estimated rotor angle for wide speed range. The rotor speed is estimated by the observed stator flux-linkage space vector. The estimated rotor speed can be determinated by differentiation of the rotor position used only in the current model part of the flux observer for a low speed operating area. In order to prove the suggested speed sensorless control algorithm. There are some simulation and testing at actual experimental system. The developed digitally high- performance speed sensorless control system are shown a good speed control response characteristic results and high Performance features using 1.0Kw RSM.

  • PDF

파라메타 변동에 강인한 유도전동기의 속도센서리스 벡터제어 (Robust Speed Sensorless Vector Control of Induction Motor for Parameter Variations)

  • 김상욱;김승범;김진수;김영석
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1997년도 하계학술대회 논문집 F
    • /
    • pp.2113-2116
    • /
    • 1997
  • The speed sensorless vector control of induction motor using the rotor speed and flux estimation is widely used. In practice, these schemes depend on the accurate parameters of the machine. If in the vector control scheme an inaccurate parameter of induction motor due to skin effects and to temperature variations is used. it is difficult to achieve correct field orientation. From this reason. we propose robust speed sensorless vector control of induction motor against the variations of parameter and disturbance by using extended Kalman filter. For speed and rotor flux estimation. conventional adaptive flux observer is applied. extended Kalman filter which is correctly capable of estimating rotor flux and load by eliminating virtually influences of structural noises is proposed. Simulation results show the effectiveness of the control strategy proposed here for the induction motor drives.

  • PDF

회전자저항동정을 갖는 유도전동기의 속도센서리스 벡터제어 (Speed Sensorless Vector Control of Induction Motors with the Identification of Rotor Resistance)

  • 김상욱;최세완;김영조;김영석
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1996년도 하계학술대회 논문집 A
    • /
    • pp.510-513
    • /
    • 1996
  • This paper consists of the speed sensorless vector control of induction motors with the estimation of rotor resistance. In the application of variable-speed induction motor drives, if an inaccurate rotor resistance is used because the rotor resistance can change due to skin effects and temperature variables, it is difficult to achieve a collect field orientation. In this paper, to overcome these difficulties adaptive algorithm is designed for rotor resistance identification at the beginning of the transient state. And an adaptive flux observer is used for the purpose of estimating rotor flux and speed in the speed sensorless scheme. Computer simulations are carried out to verity the validity of the proposed algorithm.

  • PDF

노이즈 성분을 고려한 SRM 센서리스 알고리즘의 강인성 (Robustness of a Sensorless Algorithm for Switched Reluctance Motor Considering Noise)

  • 최재동
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2000년도 전력전자학술대회 논문집
    • /
    • pp.717-720
    • /
    • 2000
  • The sensorless scheme for Switched Reluctance Motor(SRM) dives must have the robustness and reliability because the noise and error are sensitive. These elements make electrically noisy environments due to the proximity of high current power circuits with small signal electronic circuits when SRM drives. Also the leakage inductances and finite coupling capacitances these can cause the noise on any low voltage current and voltage measurement. the error can occur because the current and voltage including the noise are used as the input of sensorless algorithm In this paper the high robustness and resistance of input noise are described and the fuzzy logic based rotor estimation algorithm is used to reduce the tolerance of input data.

  • PDF

Gain Design of an Adaptive Full-order Observer Using a Pole Placement Technique for Speed Sensorless Induction Motor Drives

  • Yoo, Anno;Han, Sang-Heon;Son, Young Ik;Yoon, Young-Doo;Hong, Chanook
    • Journal of Power Electronics
    • /
    • 제16권4호
    • /
    • pp.1346-1354
    • /
    • 2016
  • This paper proposes a design guideline for the feedback gain of the adaptive full-order observer in the speed sensorless control of induction machines. The performance of the adaptive full-order observer is dependent on its feedback gain. This paper presents a pole placement method for the observer feedback gain design to improve the estimation performance of the speed adaptive observer. In the proposed method, the observer poles can be chosen independently of the induction motor poles. Instead, they can be positioned according to the operating speed. An analysis and experimental results obtained with the proposed method reveals better performances under general operating conditions.

약계자영역에서 유도전동기 구동을 위한 속도 추정 기법에 관한 연구 (A Study on the Speed Estimation Methods of Induction Motor Drives in the Field Weakening Region)

  • 김석겸;신명호;현동석
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2004년도 전력전자학술대회 논문집(1)
    • /
    • pp.269-273
    • /
    • 2004
  • It is important to estimate the rotor speed for field weakening operation in the speed sensorless stator flux oriented (SFO) induction motor drive. Several methods have been reported to estimate exactly the speed in the speed sensorless system. In this paper, we apply two observer-based methods, the Luenberger observer (LO) and the Kalman filter (KF), to SFO induction motor drive in order to achieve a speed sensorless operation in field weakening region. Two control methods are reviewed and discussed. The operation characteristics of these methods in the field weakening region is compared by simulation and experiment.

  • PDF

적응 슬라이딩 관측기를 이용한 매입형 영구자석 동기전동기의 센서리스 속도제어 (Sensorless Speed Control of IPMSM using an Adaptive Sliding mode Observer)

  • 강형석;김원석;김영석
    • 대한전기학회논문지:전기기기및에너지변환시스템부문B
    • /
    • 제55권5호
    • /
    • pp.271-279
    • /
    • 2006
  • In this paper, a new speed sensorless control based on an adaptive sliding mode observer is proposed lot the interior permanent magnet synchronous motor(IPMSM) drives. With using voltage equation only, the adaptive sliding mode observer was investigated. Since the parameter of the dynamic equation such as machine inertia or viscosity friction coefficient are not well known and these values can be easily changed during normal operation, there are many restrictions in the actual implementation. The proposed adaptive sliding mode observer applied to overcome the problem caused by using the dynamic equation. Furthermore, the Lyapunov function is used to prove the system stability included speed estimate and speed control. The effectiveness of the proposed algorithm is confirmed by the experiments.

ANN 센서리스 제어에 의한 SynRM의 효율 최적화 제어 (Efficiency Optimization Control of SynRM with ANN Sensorless)

  • 최정식;고재섭;남수명;정동화
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2005년도 학술대회 논문집 정보 및 제어부문
    • /
    • pp.563-565
    • /
    • 2005
  • This paper is proposed an efficiency optimization control algorithm for a synchronous reluctance motor(SynRM) which minimizes the copper and iron losses. ALso, this paper presents a sensorless control scheme of SynRM using artificial neural network(ANN). The proposed algorithm allows the electromagnetic losses in variable speed and torque drives to be reduced while keeping good torque control dynamics. The control performance of ANN is evaluated by analysis for various operating conditions. Analysis results are presented to show the validity of the proposed algorithm

  • PDF