• Title/Summary/Keyword: Sensorless drive system

Search Result 183, Processing Time 0.024 seconds

Sensorless Drive for Mono Inverter Dual Parallel Surface Mounted Permanent Magnet Synchronous Motor Drive System (단일 인버터를 이용한 표면 부착형 영구자석 동기 전동기 병렬 구동 시스템의 센서리스 구동 방법)

  • Lee, Yongjae;Ha, Jung-Ik
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.20 no.1
    • /
    • pp.38-44
    • /
    • 2015
  • This paper presents the sensorless drive method for mono inverter dual parallel (MIDP) surface mounted permanent magnet synchronous motor (SPMSM) drive system. MIDP motor drive system is a technique that can reduce the cost of the multi motor driving system. To maximize this merit of the MIDP motor drive system, the sensorless technique is essential to eliminate the position sensors. This paper adopts an appropriate sensorless method for MIDP SPMSM drive system, which uses the reduced order observer and phase locked loop (PLL) to reduce the calculation burden. The I-F control method is implemented for start-up and low speed operation. The validity and performance of the proposed algorithm are shown via experiments with 600-W SPMSMs.

Influence of Resistance Error to the Bandwidth of Back-EMF Estimation based SMPMSM Sensorless Drives (역기전력 추정 기반 SMPMSM 센서리스 드라이브에서 저항 오차가 대역폭에 미치는 영향)

  • Kim, Jae-Suk;Sul, Seung-Ki
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.21 no.5
    • /
    • pp.418-426
    • /
    • 2016
  • This paper analyzes the effect of resistance error to the performance of sensorless drive system of surface-mounted permanent magnet synchronous machine (SMPMSM) based on the back-EMF observer. The analysis shows that the bandwidth of the entire sensorless drive system decreased in the low-speed region when using smaller resistance value than the actual one in the back-EMF observer. Even if the back-EMF observer invokes estimation error, the entire sensorless drive system does not make any steady-state position error. These characteristics may have positive effects such as extension of the low speed limit that goes further down in the sensorless drive. The validity of the analysis is verified by the experimental setup comprising the MG set.

Sensorless control of Switched Reluctance Motor for Electric AC Compressors of Electrical Vehicles (전기자동차 용 전동식 컴프레서를 위한 스위치드 릴럭턴스 모터의 센서리스 제어)

  • Jeon, Yong-Hee;Kim, Jaehyuck
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.28 no.10
    • /
    • pp.37-42
    • /
    • 2014
  • This paper discusses study of sensorless control of a variable speed switched reluctance motor (SRM) for electric AC compressors on electrical vehicles. A typical SRM drive requires a position sensor such as an encoder or hall sensor to measure the angular rotor position. However, harsh environment in electrical AC compressors for electric vehicles makes it difficult to use the position sensor in their motor drive system. Therefore, a sensorless control scheme for electric compressor motors utilizing magnetic characteristics of SRM with respect to position angle and phase current is proposed. The overall variable speed SRM drive with position sensorless control scheme has been modeled using Matlab/Simulink software and closed loop current control simulation is presented to validate the proposed sensorless drive control.

Sensorless Starting of Direct Drive Horizontal Axis Washing Machines

  • Dianov, Anton;Kim, Nam Su;Lim, Seung Moo
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • v.3 no.2
    • /
    • pp.148-154
    • /
    • 2014
  • This paper describes problems of the sensorless starting of horizontal axis washing machines with direct drive and suggests solution, which was experimentally verified. Horizontal axis washing machines have very difficult conditions for the drive starting, especially at full load. Inertia of the tub and water, torque from the laundry make load torque at starting higher than rated one and sometimes even higher than the maximum torque of the motor, which makes sensorless starting extremely challenging task. This paper suggests modified open-loop starting, where control system is closed shortly after beginning at low speed and rotates the drum until laundry restructuring. To ensure proper work of the sensorless algorithm at low speed additional measures for increasing of the estimation algorithm performance have been taken. These measures include special algorithm for the drive parameters estimation, which has been developed and verified by the experimental results.

Excitation Scheme to Enhance Output Torque of Sensorless BLDC Motor to Drive the Flight Attitude Control Fins of a Guided Artillery Munition (유도형 탄약의 조정날개 구동용 Sensorless BLDC 전동기의 출력 토크 향상을 위한 여자 기법)

  • Lee, Tae-Hyung;Kim, Sang-Hoon
    • Journal of Industrial Technology
    • /
    • v.35
    • /
    • pp.9-13
    • /
    • 2015
  • In this paper, a new excitation scheme is developed to increase the output torque of the sensorless BLDC(Brushless DC) motor(BLDCM), which drives fins to control the flight attitude of a guided artillery munition. The proposed scheme is based on a 12-step excitation strategy combining two-phase and three-phase excitations. The proposed 12-step excitation scheme can produce more torque than a typical 6-step scheme for the start-up and synchronous operation in the sensorless BLDCM drive. The simulation and experimental results on the sensorless BLDCM drive system to control the fin were verified the validity of the proposed scheme.

  • PDF

Sensorless control of a SPMSM for driving cooling fans (냉각 팬 구동을 위한 SPMSM의 센서리스 제어)

  • Kim, Sang-Hoon;Kim, Ji-Min
    • Journal of Industrial Technology
    • /
    • v.34
    • /
    • pp.15-20
    • /
    • 2014
  • Recently, PMSMs(Permanent Magnet Synchronous Motors) have become increasingly popular in various high-performance motor drive applications. However, the high-performance drive of PMSMs needs a position sensor such as a resolver, which increases not only the price of the system but also reduces the system reliability. This paper is on the implementation of sensorless control of a SPMSM, which drives a fan for cooling in appliances. In this paper, the rotor position for high-performance drive of a SPMSM is derived from back electromotive force (EMF) information proportional to the rotor speed. Also, the initial rotor position information for start-up is estimated from a saturation phenomenon of inductance. The validity of the proposed sensorless drives was confirmed by the experiment on the SPMSM drive systems for cooling fans of refrigerators and laptop computers.

  • PDF

Sensorless Drive Circuit of a Switched Reluctance Motor using the Variation of Phase Currents (상전류 변화를 이용한 Switched Reluctance Motor의 Sensorless 구동회로)

  • Lim, J.Y.;Cho, K.Y.;Shin, D.J.;Kim, C.H.;Kim, J.C.
    • Proceedings of the KIEE Conference
    • /
    • 1995.07a
    • /
    • pp.315-317
    • /
    • 1995
  • A simple drive circuit without position sensors for a switched reluctance motor is presented. The turn on and turn off points are determined by detecting the rate of change of the active phase current. The drive circuit consists of a current sensing resistor, RC filter, comparator, OP Amp, and OR gates. It is verified through the experiments that the switched reluctance motor with the proposed sensorless drive circuit is well operated in wide speed ranges.

  • PDF

A Sensorless Switched Reluctance Drive System Based on the Improved Simplified Flux Method

  • Li, Zhenguo;Song, Andong;Ahn, Jin-Woo
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • v.1 no.4
    • /
    • pp.477-482
    • /
    • 2012
  • This paper describes a new rotor position sensorless control method for SRM drives based on an improved simplified flux linkage method. In the traditional simplified flux linkage method, every phases take turns conduction and current chopping control method is used. Every phases take turns conduction means turning on the incoming working phase while turning off the working phase. This conduction mode causes coupling between turn-on and turn-off angles, which goes against optimal efficiency or torque ripple minimization with sensorless speed control. In the improved simplified flux linkage method, turn-off angle is calculated by flux loop, the turn-on angle can be given arbitrarily and has no relations with the turn-off angle, and the current chopping control method is used. The speed and rotor position can be estimated then. Finally, a sensorless SRM speed control system and an experiment platform with DSP are built and validity of this method is confirmed.

A Sensorless Control of IPMSM using the Improving Instantaneous Reactive Power Compensator (개선된 순시무효전력 보상기를 이용한 IPMSM의 센서없는 속도제어)

  • La, Jae Du
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.10
    • /
    • pp.1303-1307
    • /
    • 2018
  • A improving sensorless compensator for the IPMSM(Interior Permanent Magnet Synchronous Motor) drive system is proposed. Generally, the motor drive system is required the robust parameter variation and disturbance. The speed estimation methods of the conventional IRP(Instantaneous Reactive Power) compensator is improved by the speed estimation techniques of the current model observer with the proposed instantaneous reactive power compensator. Performance evaluations of the novel speed error compensator and sensorless control system are carried out by the experiments.

Sensorless Control Using the Back EMF of PM Generator for 2MW Variable Speed Wind Turbine (역기전력을 이용한 2MW급 가변속 풍력터빈용 영구자석 동기기의 센서리스 제어)

  • Im, Ji-Hoon;Oh, Sang-Geun;Song, Seung-Ho;Lee, Hyen-Young;Kwon, Oh-Jeong;Jang, Jeong-Ik;Lee, Kwon-Hee
    • Journal of Wind Energy
    • /
    • v.2 no.2
    • /
    • pp.54-60
    • /
    • 2011
  • A PMSG in variable speed wind turbine needs to know the position of rotor for vector control. Since the position sensor has the disadvantage in terms of cost, complexity of the system, a sensorless algorithm is needed. The sensorless strategy using the back EMF estimation is used for PMSG Wind Turbine. This algorithm is comparatively easy to implement than other strategies. This paper introduces the application of stable sensorless control for 2MW direct drive PMSG. In order to confirm the sensorless algorithm, the implementation is proceeded using 2MW direct drive PMSG from no-load condition to full-load condition. To drive 2MW PMSG artificially, 2MW PMSG connected PMSG through the mechanical coupling.