• Title/Summary/Keyword: Sensorless Speed Control

Search Result 600, Processing Time 0.028 seconds

Maximum Torque Control Of Induction Machines in Field Weakening Region (약계자 영역에서 유도전동기의 최대 토오크 운전)

  • Kim, Sang-Hoon;Sul, Seung-Ki
    • Proceedings of the KIEE Conference
    • /
    • 1994.07a
    • /
    • pp.277-279
    • /
    • 1994
  • In this paper, a novel field weakening scheme for the induction machine by the voltage control strategy is presented. The proposed algorithm ensures producing the maximum torque over the entire field weakening legion. Also by introducing the direct field-oriented control in the field weakening legion with large variation in machine parameters, the drive system can obtain the robustness to machine parameter variation. Moreover, by using estimated speed, sensorless speed control can be possible in very high speed lesion. Experimental results for a laboratory induction motor drive system confirm the validity or the proposed control algorithm.

  • PDF

Induction Machine Sensorless Vector Control typed by the Field Orientation Using 2 order Flux Observer (2차 자속관측기를 이용한 자계 Orientation 형 유도전동기 센스리스 벡터제어)

  • Hong, S.I.;Son, E.S.;Lee, D.C.
    • Proceedings of the KIEE Conference
    • /
    • 2002.07d
    • /
    • pp.2067-2069
    • /
    • 2002
  • The study of the vector control of the induction machine without speed sensor is going on and there are the adaptive performance method to use the flux observer. This study is to make the vector control without the speed sensor based on the flux oriented reference vector control theory. This paper proposes the new speed follow-up method to deduce the current value in the current sensor and the 2 order flux observer based on the observer theory and examine the possibility to realize the flux oriented vector control system using the simulation in this proposed method of this study.

  • PDF

A Sensorless Vector Controller for Induction Motors using an Adaptive Fuzzy Logic

  • Huh, Sung-Hoe;Park, Jang-Hyun;Ick Choy;Park, Gwi-Tae
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.162.5-162
    • /
    • 2001
  • This paper presents a indirect vector control system for induction motors using an adaptive fuzzy logic(AFL) speed estimator. The proposed speed estimator is based on the MRAS(Mode Referece Adaptive System) scheme. In general, the MRAS speed estimation approaches are more simple than any other strategies. However, there are some difficulties in the scheme, which are strong sensitivity to the motor parameters variations and necessity to detune the estimator gains caused by different speed area. In this paper, the AFL speed estimator is proposed to solve the problems. The structure of the proposed AFL is very simple. The input of the AFL is the rotor flux error difference between reference and adjustable model, and the output is the estimated incremental rotor speed. Moreover, the back propagation algorithm is combined to adjust the parameters of the fuzzy logic to the most appropriate values during the operating the system. Finally, the validity of the ...

  • PDF

A High-Performance Control System of Reluctance Synchronous Motor with Direct Torque Control (직접토크제어에 의한 리럭턴스 동기전동기의 고성능 제어시스템)

  • Kim, Min-Huei;Kim, Nam-Hun;Kim, Min-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2001.07e
    • /
    • pp.47-52
    • /
    • 2001
  • This paper presents a high-performance control system for Reluctance Synchronous Motor (RSM) drives with direct torque control (DTC). The system consist of stator flux observer, rotor position/speed estimator, torque estimator, two hysteresis band controllers, an optimal switching look-up table, IGBT voltage source inverter, and F240/C31DSP controller by using fully integrated control software. The stator flux observer is based on the combined voltage and current model with stator flux feedback adaptive control that inputs are current and voltage sensing of motor terminal with estimated rotor angle for wide speed range. The rotor position is estimated by the observed stator flux-linkage space vector. The estimated rotor speed can be determinated by differentiation of the rotor position used only in the current model part of the flux observer for a low speed operating area. To prove the suggested control algorithm, we have a simulation and testing at actual experimental system. The developed digitally high-performance position sensorless control system are shown a good motion control response characteristic results and high performance features using 1.0Kw RSM.

  • PDF

A Novel Flux Calculator for the Field Oriented Control of an Induction Motor without Speed Sensors (속도센서 없는 유도전동기 자속기준제어를 위한 새로운 자속 연산기)

  • 김경서
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.3 no.2
    • /
    • pp.125-130
    • /
    • 1998
  • This paper describes a novel flux calculator for the estimation of real rotor flux angle which is indispensable to the field oriented control of induction motors. A pure integrator is used to estimate the real rotor flux precisely from voltage and current information. The proposed flux calculator adopts the new drift compensation method to overcome the drift problem of pure integrator. The motor speed is calculated using estimated flux angle and estimated slip frequency. The performance of this approach is verified through the experiment. The experimental results shows stable operation of proposed system even below 1/100 of rated speed.

A Study on the New Parameter Estimation Technique of Direct Current Motor (직류전동기의 새로운 파라미터 추정기법에 관한 연구)

  • Kim, Jong-Su;Kim, Sung-Hwan
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.31 no.4
    • /
    • pp.441-447
    • /
    • 2007
  • The speed and torque control performance of the DC motor used in the industrial field is affected by the change of parameters. In particular the change of armature resistance can be greatly originated from various load conditions. Accordingly a large number of studies to estimate those problems in the servo motor control field have already been under way. In this paper, the armature resistance on the DC motor under several load and speed conditions is estimated by the Artificial Neural Network(ANN), and the validity is proven by the speed estimation of sensorless speed control system.

Speed Sensorless Control of IPMSM Drive of ANN (ANN에 의한 PMSM의 속도제어)

  • Lee, Hong-Gyun;Lee, Jung-Chul;Jung, Tack-Gi;Lee, Young-Sil;Chung, Dong-Hwa
    • Proceedings of the KIEE Conference
    • /
    • 2003.07b
    • /
    • pp.1120-1123
    • /
    • 2003
  • This paper is proposed a ANN-based rotor position and speed estimation method for IPMSM by measuring the currents. Because the proposed estimator treats the estimated motor speed as the weights, it is possible to estimate motor speed to adapt back propagation algorithm with 2 layered neural network. The proposed control algorithm is applied to IPMSM drive system. The operating characteristics controlled by neural networks control are examined in detail.

  • PDF

Design of Sensorless Controller for Interior Permanent-Magnet BLDC Motor (영구 자석 매립형 BLDC Motor의 Sensorless 제어기 설계)

  • Kim, Hag-Wone;Yeum, Kwan-Ho;Cho, Kwan-Youl;Ahn, Jun-Ho;Shin, Hyoun-Jeong;Byun, Il-Soo;Kim, Jung-Chul
    • Proceedings of the KIEE Conference
    • /
    • 1996.11a
    • /
    • pp.299-301
    • /
    • 1996
  • Recently, as a result of the progress in power electronics and magnet technology, the applications of inverter fed BLDC Motor have increased for industry and home appliance. Also because of the high efficiency, good acoustic noise characteristic, BLDC Motor applications are growing. However, BLDC Motor requires position sensor, which has many problems such as high cost, more space and difficult to install. Therefore, sensorless control algorithm is being studied. In this paper, sensorless algorithm for interior permanent magnet BLOC motor adaptable for home appliance is proposed. The maximum torque per amp operation with advance angle considering load torque and speed was simulated and verified through the experiment.

  • PDF

Rubust Vector Control of an Induction Motor without Speed Sensor (유도전동기의 속도 센서 없는 견실한 벡터 제어)

  • Park, Tae-Sik;Kim, Seong-Hwan;Kim, Nam-Jeung;Yoo, Ji-Yoon;Park, Gwi-Tae
    • Journal of IKEEE
    • /
    • v.1 no.1 s.1
    • /
    • pp.55-63
    • /
    • 1997
  • The purpose of this paper is to realize robust vector control of an induction motor without speed sensor. In order to do it, the speed of an induction motor is estimated using model reference adaptive system(MRAS) and two rotor flux observers which have robustness to the parameter variation are employed as the reference model and the adjustable model in MRAS speed estimator. The MRAS-based overall control scheme has been implemented on 2.2kW induction motor control system and it is verified that the proposed speed sensorless control scheme is more stable and robust than the conventional schemes.

  • PDF

Sensorless Control of the Synchronous Reluctance Machine

  • Kilthau A.;Pacas J. M.
    • Proceedings of the KIPE Conference
    • /
    • 2001.10a
    • /
    • pp.768-772
    • /
    • 2001
  • The paper deals with the control of the synchronous reluctance machine without position sensor. A method for the computation of the transformation angle out of terminal voltages and currents is presented. The injection of test signals allows operation at zero speed. Fundamental for this control scheme is the exact modelling of the machine, where especially the saturable inductances are of central interest. The accuracy of the angle estimation method over the whole operating range including field-weakening is discussed in detail. The implementation of the angle estimation method in a rotor-oriented control scheme and practical results are demonstrated.

  • PDF