• Title/Summary/Keyword: Sensorless Realization

Search Result 10, Processing Time 0.021 seconds

A Study on the Sensorless Realization of Magnetic Levitation System by Two-Degree-of-freedom Control Method (2자유도 제어기법에 의한 자기 부상계의 센서리스 실현에 관한 연구)

  • 양주호
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.22 no.6
    • /
    • pp.888-893
    • /
    • 1998
  • In this paper, we present a magnetic levitation system which has not a gap sensor with sensor-less realization and stabilizing controller design. For measuring gap between magnet and levitated object we propose a gap sensorless method and adop two-degree-of-freedom controller for robust-ness and performence of the magnetic levitation system. From time responeses we confirm that the proposed sensorless method which can be applied to magnetic levitation system. Also the designed stabilizing controller has good disturbance rejection and reference tracking performance.

  • PDF

Controller design of sensorless magnetic levitation system by 2-degree-of-freedom method (2자유도 기법에 의한 센서리스 자기 부상계의 제어기 설계)

  • 김창화;정해종;양주호
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.426-431
    • /
    • 1997
  • In this paper, a sensorless realization method is proposed for the magnetic levitation system. Also we design the robust servo controller which based on the two degree-of-freedom-control theory and H$\sub$.inf./ control theory for the system. From time responses, we confirm that the proposed sensorless method can be applied the magnetic levitation system. Also the designed controller has the good disturbance rejection and the reference tracking performance.

  • PDF

A Speed Sensorless Control of Induction Motors Based on Feedforward Quick Torque Response Control Technique (피드포워드적 토크고속응답제어법을 이용한 유도전동기의 속도센서레스 제어)

  • Jeong, S.K.
    • Journal of Power System Engineering
    • /
    • v.3 no.2
    • /
    • pp.70-78
    • /
    • 1999
  • The vector controlled induction motor(I.M) with speed sensor has been widely used for variable speed drive systems. In these application fileds, speed sensorless control are expected strongly to progress reliability, simplicity and cost performance of I.M and to expand its application part. This paper describes a novel speed sensorless control method of I.M based on feedforward quick torque response control technique. Especially, this paper aimed at the realization of sensorless control in the very low speed region, The proposed method can be formulated simply from a motor circuit equation and conducted easily by detecting primary motor currents and a voltage command at every sampling time. Throughout some results of numerical simulations with the assumption of using a pulse width modulation(PWM) voltage source inverter, the validity of the method was successfully confirmed.

  • PDF

A Study on the Sensorless Realization of Magnetic Levitation System (자기 부상계의 센서리스 실현에 관한 연구)

  • 김창화;정병건;양주호
    • Journal of KSNVE
    • /
    • v.8 no.1
    • /
    • pp.195-203
    • /
    • 1998
  • The magnetic levitation system is utilized in the magnetic bearing of high-speed rotor because of little friction, no lubrication, no noise and so on. The magnetic levitation system need the feedback controller for the stabilization of system, and gap sensors are generally used to measure the gap. The use of sensor easily goes into troublesome caused by sensor failure discord between the measurement point and the control point etc. This paper presents the design of robust stabilizing contoller by $H_{\infty}$ control theory using the sensorless method proposed by authors in the magnetic levitation system. And we investigated both the validity of the designed controller and the usefulness of the sensorless magnetic levitation system through results of actual experiment.

  • PDF

Pulse Counting Sensorless Detection of the Shaft Speed and Position of DC Motor Based Electromechanical Actuators

  • Testa, Antonio;De Caro, Salvatore;Scimone, Tommaso;Letor, Romeo
    • Journal of Power Electronics
    • /
    • v.14 no.5
    • /
    • pp.957-966
    • /
    • 2014
  • Some of DC actuators used in home automation, office automation, medical equipment and automotive systems require a position sensor. In low power applications, the introduction of such a transducer remarkably increases the whole system cost, which justifies the development of sensorless position estimation techniques. The well-known AC motor drive sensorless techniques exploiting the fundamental component of the back electromotive force cannot be used on DC motor drives. In addition, the sophisticated approaches based on current or voltage signal injection cannot be used. Therefore, an effective and inexpensive sensorless position estimation technique suitable for DC motors is presented in this paper. This technique exploits the periodic pulses of the armature current caused by commutation. It is based on a simple pulse counting algorithm, suitable for coping with the rather large variability of the pulse frequency and it leads to the realization of a sensorless position control system for low cost, medium performance systems, like those in the field of automotive applications.

Speed-Sensorless Vector Control of an Induction Motor Using Recursive Least Square Algorithm (RLS 기법을 이용한 유도전동기의 속도센서없는 벡터제어)

  • Park, Tae-Sik;Kim, Seong-Hwan;Yu, Ji-Yun;Park, Gwi-Tae;Kim, Nam-Jeong
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.48 no.3
    • /
    • pp.139-143
    • /
    • 1999
  • This paper is on realization of the speed-sensorless vector control of an induction motor using the RLS(Recursive Least Square) algorithm. The speed estimator is including the RLS algorithm and a rotor flux observer. The RLS algorithm has speed and rotor time constant as parameter vectors and rotor flux observer is designed to have robustness to stator resistance variation and through the IP(Integral and Proportional) speed controller stable performance is obtained for estimating rotor speed. Finally the total algorithm are realized in induction motor drive system and its effectiveness is verified.

  • PDF

Field Oriented Vector Control of Induction Motor without Speed Sensor Using Flux Observer (자속관측기를 이용한 유도 전동기 자계 Orientation형 센서리스 벡터제어)

  • 손의식;홍순일
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.27 no.1
    • /
    • pp.100-107
    • /
    • 2003
  • This study was to control magnetic field orientation-typed sensorless vector control by applying the theory of a rotor flux observer to drive an induction motor. This research suggested a new speed estimation method that estimates speed with the rotor flux obtained by using a flux observer and the variable of state current detected by a current sensor without a speed sensor. Because the speed estimation method is independent from the motor constants, it is not necessary to control the gain of the parameters and the algorithm is simple. In the findings of the study, the researcher was convinced of the control function and the possibility of realization in the simulation experiment of sensorless vector control system by using DSP(Digital Signal Prosessor).

Cartesian Space Direct Teaching for Intuitive Teaching of a Sensorless Collaborative Robot (센서리스 협동로봇의 직관적인 교시를 위한 직교공간 직접교시)

  • Ahn, Kuk-Hyun;Song, Jae-Bok
    • The Journal of Korea Robotics Society
    • /
    • v.14 no.4
    • /
    • pp.311-317
    • /
    • 2019
  • Direct teaching is an essential function for collaborative robots for easy use by non-experts. For most robots, direct teaching is implemented only in joint space because the realization of Cartesian space direct teaching, in which the orientation of the end-effector is fixed while teaching, requires a measurement of the end-effector force. Thus, it is limited to the robots that are equipped with an expensive force/torque sensor. This study presents a Cartesian space direct teaching method for torque-controlled collaborative robots without either a force/torque sensor or joint torque sensors. The force exerted to the end-effector is obtained from the external torque which is estimated by the disturbance observer-based approach with the friction model. The friction model and the estimated end-effector force were experimentally verified using the robot equipped with joint torque sensors in order to compare the proposed sensorless approach with the method using torque sensors.

Sensorless Passivity Based Control of a DC Motor via a Solar Powered Sepic Converter-Full Bridge Combination

  • Linares-Flores, Jesus;Sira-Ramirez, Hebertt;Cuevas-Lopez, Edel F.;Contreras-Ordaz, Marco A.
    • Journal of Power Electronics
    • /
    • v.11 no.5
    • /
    • pp.743-750
    • /
    • 2011
  • This article deals with the sensor-less control of a DC Motor via a SEPIC Converter-Full Bridge combination powered through solar panels. We simultaneously regulate, both, the output voltage of the SEPIC-converter to a value larger than the solar panel output voltage, and the shaft angular velocity, in any of the turning senses, so that it tracks a pre-specified constant reference. The main result of our proposed control scheme is an efficient linear controller obtained via Lyapunov. This controller is based on measurements of the converter currents and voltages, and the DC motor armature current. The control law is derived using an exact stabilization error dynamics model, from which a static linear passive feedback control law is derived. All values of the constant references are parameterized in terms of the equilibrium point of the multivariable system: the SEPIC converter desired output voltage, the solar panel output voltage at its Maximun Power Point (MPP), and the DC motor desired constant angular velocity. The switched control realization of the designed average continuous feedback control law is accomplished by means of a, discrete-valued, Pulse Width Modulation (PWM). Experimental results are presented demonstrating the viability of our proposal.

Impedance Model based Bilateral Control for Force reflection of a Laparoscopic Surgery Robot (복강경 수술 로봇의 힘 반향을 위한 임피던스 모델 기반의 양방향 제어)

  • Yoon, Sung-Min;Kim, Won-Jae;Lee, Min-Cheol
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.20 no.8
    • /
    • pp.801-806
    • /
    • 2014
  • LAS (Laparoscopy Assisted Surgery) has been substituted alternatively for traditional open surgery. However, when using a commercialized robot assisted laparoscopic such as Da Vinci, surgeons have encountered some problems due to having to depend only on information by visual feedback. To solve this problem, a haptic function is required. In order to realize the haptic teleoperation system, a force feedback and bilateral control system are needed. Previous research showed that the perturbation value estimated by a SPO (Sliding Perturbation Observer) followed a reaction force that loaded on the surgical robot instrument. Thus, in this paper, the force feedback problem of surgical robots is solved through the reaction force estimation method. This paper then introduces the possibility of the haptic function realization of a laparoscopic surgery robot using a bilateral control system. For bilateral control, the master uses an impedance control and the slave uses a SMC (Sliding Mode Control). The experiment results show that a torque and force sensorless teleoperation system can be implemented using a bilateral control structure.