• Title/Summary/Keyword: Sensorless Control Transition Method

Search Result 7, Processing Time 0.019 seconds

Speed Controller Transition Method for I-F Operation and Sensorless Operation of Permanent Magnet Synchronous Motor (영구자석 동기 전동기의 I-F 구동과 센서리스 구동을 위한 속도 제어 절환 기법)

  • Kim, Dong-Uk;Kim, Sungmin
    • Journal of IKEEE
    • /
    • v.23 no.2
    • /
    • pp.543-551
    • /
    • 2019
  • Permanent Magnet Synchronous Motors(PMSMs) have a wider range of applications due to their high output density and high efficiency. PMSMs are used not only in high-power density, high-performance motor-driven systems such as vehicle and robots, but also in systems where cost-cutting is very important, such as washing machines, air conditioners and refrigerators. To reduce costs, position sensorless control is required, which is generally difficult to be used under conditions of starting the motor. Thus, the I-F speed control that rotates the current vector at any speed in the starting procedure should be used at first, and then the sensorless speed control could be applied after PMSM rotates above a certain speed. Speed control performance in I-F speed control and sensorless speed control is very important. And more speed control performance should be maintained even in the transient in which the two control techniques are changed. In this paper, the speed controller transition method from I-F speed control to sensorless speed control of permanent magnet synchronous motor is proposed. Experiments were carried out on the washing machine drive system to verify the performance of the proposed technique.

Improved Transition Method for Sensorless Operation of Interior Permanent Magnet Synchronous Motor Drives (매입형 영구자석 동기기 센서리스 구동부의 개선된 절환 기법)

  • Han, Dong Yeob;Yoon, Jae Seung;Cho, Yongsoo;Lee, Kyo-Beum
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.8
    • /
    • pp.1362-1368
    • /
    • 2016
  • This paper proposes the improved transition scheme for a sensorless drive of an interior permanent magnet synchronous motor (IPMSM). In order to operate the IPMSM, the current controller can be used until 300 rpm for the initial operation. After that, the control method of IPMSM is changed to the speed controller for the sensorless control method. At that point, the rotor speed overshoot is generated due to the rapid change of the current reference for the speed controller. The proposed algorithm is able to reduce the overshoot of a rotor speed by compensating the estimated feedforward value to the speed controller. The feedforward value of the current reference is estimated by using a coordinate transformation and is approximated to the current reference after the transition of the control mode. The effectiveness of the proposed scheme is verified by experiments using an IPMSM drive system.

Experimental Evaluation of Position Sensorless Control on Hybrid Electric Vehicle Applications

  • Choi, Chan-Hee;Kim, Bum-Sik;Lee, Young-Kook;Jung, Jin-Hwan;Seok, Jul-Ki
    • Journal of Power Electronics
    • /
    • v.11 no.4
    • /
    • pp.464-470
    • /
    • 2011
  • In this paper, the feasibility of applying a position sensorless control technique to hybrid electric vehicles (HEVs) is practically evaluated. The proposed position estimator has a straightforward structure with properties that combines the model and the saliency tracking-based rotor position estimation for interior permanent magnet synchronous motors (IPMSMs). The proposed method can be used in the event of sensor loss or sensor recovery to sustain continuity of operations. The developed system takes into account the estimated position transition between two distinct sensorless methods. The transition is enhanced by introducing a synchronized transition algorithm based on a single tracking observer. Extensive experimental results are presented to verify the principles and show a reliable estimation performance over the entire speed range including standstill under 150% load conditions.

Current Model based SPMSM Sensorless Vector Control using Back Electro Motive Force Estimator (역기전력 추정기를 이용한 전류 모델 기반의 SPMSM 센서리스 벡터제어)

  • Lee, Jung-Hyo;Yu, Jae-Sung;Kong, Tae-Woong;Lee, Won-Chul;Won, Chung-Yuen
    • Proceedings of the KIPE Conference
    • /
    • 2007.11a
    • /
    • pp.7-10
    • /
    • 2007
  • The current model based sensorless method has many benefits that it can be robust control for large load torque. However, this method should determine a coefficient of back electro motive force(back-emf). This coefficient is varied by load torque and speed. Also, the coefficient determining equation is not exist, so it is determined only by experiment. On the other hands, using only back-emf estimatior method can not drive in low speed area and it has weakness in load variation. For these problems, this paper suggests the hybrid sensorless method that mixes the back-emf estimator regarding saliency and the current based sensorless model. This estimator offers not only non-necessary coefficient for current sensorless model, but also wide speed area operating in no specific transition method.

  • PDF

Design of Sensorless BLDC Motor Driver Using Variable Voltage and Back-EMF Differential Line (가변 전압기와 역기전력 차동방식을 이용한 센서리스 BLDC 전동기 드라이버 설계)

  • Lee, Myoungseok;Kong, Kyoungchul
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.21 no.10
    • /
    • pp.910-916
    • /
    • 2015
  • A sensorless motor control scheme with conventional back-Electro Motive Force (EMF) sensing based on zero crossing point (ZCP) detection has been widely used in various applications. However, there are several problems with the conventional method for effectively driving sensorless brushless motors. For example, a phase mismatch of 30 degrees occurs between the ZCP and commutation time. Additionally, most of the motor speed/current controls are achieved based on a pulse width modulation (PWM) method, which generates significant noise that distracts the back-EMF sensing. Due to the PWM switching, the ZCP is not deterministic, and thus the efficiency of the motor is reduced because the phase transition points become uncertain. Moreover, the motor driving performance is degraded at a low speed range due to the effect of PWM noise. To solve these problems, an improved back-EMF detection method based on a differential line method is proposed in this paper. In addition, the proposed sensorless BLDC driver addresses the problems by using a variable voltage driver generated from a buck converter. The variable voltage driver does not generate the PWM switching noise. Consequently, the proposed sensorless motor driver improves 1) the signal-to-noise ratio of back-EMF, 2) the operation range of a BLDC motor, and 3) the torque characteristics. The proposed sensorless motor driver is verified through simulations and experiments.

Improved Programmable LPF Flux Estimator with Synchronous Angular Speed Error Compensator for Sensorless Control of Induction Motors (유도 전동기 센서리스 제어를 위한 동기 각속도 오차 보상기를 갖는 향상된 Programmable LPF 자속 추정기)

  • Lee, Sang-Soo;Park, Byoung-Gun;Kim, Rae-Young;Hyun, Dong-Seok
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.18 no.3
    • /
    • pp.232-239
    • /
    • 2013
  • This paper proposes an improved stator flux estimator through ensuring conventional PLPF to act as a pure integrator for sensorless control of induction motors. Conventional PLPF uses the estimated synchronous speed as a cut-off frequency and has the gain and phase compensators. The gain and phase compensators are determined on the assumption that the estimated synchronous angular speed is coincident with the real speed. Therefore, if the synchronous angular speed is not same as the real speed, the gain and phase compensation will not be appropriate. To overcome the problem of conventional PLPF, this paper analyzes the relationship between the synchronous speed error and the phase lag error of the stator flux. Based on the analysis, this paper proposes the synchronous speed error compensation scheme. To achieve a start-up without speed sensor, the current model is used as the stator flux estimator at the standstill. When the motor starts up, the current model should be switched into the voltage model. So a stable transition between the voltage model and the current model is required. This paper proposes the simple transition method which determines the initial values of the voltage model and the current model at the transition moment. The validity of the proposed schemes is proved through the simulation results and the experimental results.

Hall Sensor Fault Detection and Fault-Tolerant Control of High-Speed PMSM Drive System (고속 영구자석 동기전동기 구동장치의 홀센서 고장검출 및 보호제어)

  • Jang, Myung-Hyuk;Lee, Kwang-Woon
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.18 no.3
    • /
    • pp.205-210
    • /
    • 2013
  • This paper presents a novel hall sensor fault detection and fault-tolerant control method for a high-speed permanent magnet synchronous motor (PMSM) drive system. A phase locked loop (PLL) type position estimator is used with a conventional interpolation based rotor position estimator to reduce position errors due to misalignment of hall sensors. The expected trigger time of hall sensor's output is used for detecting hall sensor fault condition and the PLL type position estimator is reconfigured for fault-tolerant control at the hall sensor fault condition. The proposed method can minimize current ripples during the transition from sensored control using hall sensors to sensorless control. Experimental results have been proposed to prove the validity of the proposed method.