• Title/Summary/Keyword: Sensorless 제어

Search Result 662, Processing Time 0.025 seconds

Considerations on the Performance of Current Sensorless Control of a Synchronous Reluctance Motor (동기릴럭턴스전동기의 전류센서리스 제어 성능 고찰)

  • Shin, Myoung-Ho
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.26 no.1
    • /
    • pp.61-65
    • /
    • 2012
  • Some works about the current sensorless control of a synchronous reluctance motor have been presented. However, there is no analysis about the performance and the detuning effect of the current sensorless control. This paper presents the problems and the detuning effect of the current sensorless control of a synchronous reluctance motor by simulation results. In addition, torque limiter is proposed to limit the torque current within the torque limit.

A sensorless speed control of brushless DC motor by using direct torque control (직접토크제어에 의한 브러시리스 직류전동기의 센서리스 속도제어)

  • Yoon, Kyoung-Kuk;Oh, Sae-Gin;Kim, Deok-Ki
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.39 no.9
    • /
    • pp.935-939
    • /
    • 2015
  • This paper describes sensorless speed control of brushless DC motors by using direct torque control. Direct torque control offers fast torque response, robust specification of parameter changes, and lower hardware and processing costs compared to vector-controlled drives. In this paper, the current error compensation method is applied to the sensorless speed control of a brushless DC motor. Through this control technique, the controlled stator voltage is applied to the brushless DC motor such that the error between the stator currents in the mathematical model and the actual motor can be forced to decay to zero as time proceeds, and therefore, the motor speed approaches the setting value. This paper discusses the composition of the controller, which can carry out robust speed control without any proportional-integral (PI) controllers. The simulation results show that the control system has good dynamic speed and load responses at wide ranges of speed.

Development of Speed Sensorless Actuation Controller for Guided Rocket (유도탄 구동장치용 속도 Sensorless 제어기 연구)

  • Park, Chihyoung;Cha, Hanju
    • Proceedings of the KIPE Conference
    • /
    • 2015.07a
    • /
    • pp.473-474
    • /
    • 2015
  • 유도탄 구동장치용 제어기는 제한된 공간 내에서 최적의 성능 및 신뢰성을 구현하도록 구성되어야 한다. 유도탄 구동장치에 요구되는 강건제어를 구현하기 위하여 위치 및 속도 제어를 수행하였으며, 속도값은 센서 없이 HGO(High Gain Observer) 기법을 이용하여 추정하였다. 시험 및 검증을 위해 프로토타입 제어기 및 구동기를 활용하였으며, Matlab/Simulink를 통한 시뮬레이션 및 실제 시험결과가 일치함을 확인하고, 이러한 구동 제어기 개발 기법의 적절성을 제시하였다.

  • PDF

A new sensorless speed control method for permanent magnet synchronous motor using direct torque control (직접토크제어를 이용한 영구자석 동기전동기의 새로운 센서리스 속도제어)

  • Oh, Sae-Gin;Kim, Jong-Su;Kim, Sung-Hwan
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.37 no.6
    • /
    • pp.653-658
    • /
    • 2013
  • This paper describes a new sensorless speed control method for permanent magnet synchronous motor(PMSM) using direct torque control(DTC). The direct torque control offers fast torque response, lesser hardware and processing costs as compared to vector controlled drives. In this paper the current error compensation technique is applied for sensorless speed control of synchronous motor. Through this method, the controlled stator voltage is applied to the synchronous motor so that the error between stator currents of the mathematical model and the actual motor can be forced to decay to zero as time proceeds and therefore, the motor speed approaches to the setting value. Especially, any PI controllers are not necessary in this control method. The simulation results indicate good speed and load responses from the low speed range to the high.

A Position Sensorless Control System of SRM using Neural Network (신경회로망을 이용한 위치센서 없는 스위치드 릴럭턴스 전동기의 제어시스템)

  • 김민회;백원식;이상석;박찬규
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.9 no.3
    • /
    • pp.246-252
    • /
    • 2004
  • This paper presents a position sensorless control system of Switched Reluctance Motor (SRM) using neural network. The control of SRM depends on the commutation of the stator phases in synchronism with the rotor position. The position sensing requirement increases the overall cost and complexity. In this paper, the current-flux-rotor position lookup table based position sensorless operation of SRM is presented. Neural network is used to construct the current-flux-rotor position lookup table, and is trained by sufficient experimental data. Experimental results for a 1-hp SRM is presented for the verification of the proposed sensorless algorithm.

PMSM Sensorless Speed Control Using a High Speed Sliding Mode Observer (고속 슬라이딩모드 관측기를 이용한 PMSM 센서리스 속도제어)

  • Son, Ju-Beom;Kim, Hong-Ryel;Seo, Young-Soo;Lee, Jang-Myung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.16 no.3
    • /
    • pp.256-263
    • /
    • 2010
  • The paper proposes a sensorless speed control strategy for a PMSM (Permanent Magnet Synchronous Motor) based on a new SMO (Sliding Mode Observer), which substitutes a signum function with a sigmoid function. To apply robust sensorless control of PMSM against parameter fluctuations and disturbance, the high speed SMO is proposed, which estimates the rotor position and angular velocity from the back EMF. The low-pass filter and additional position compensation of the rotor are used to reduce the chattering problem commonly found in sliding mode observer with signum function, which becomes possible by applying the sigmoid function with the control of a switching function. Also the proposed sliding mode observer with the sigmoid function has better efficiency than the conventional sliding mode observer since it adjusts the observer gain by variable boundary layer and estimates the stator resistance. The stability of the proposed sliding mode observer is verified by the Lyapunov second method in determining the observer gain. The validity of the proposed high speed PMSM sensorless velocity control has been demonstrated by real experiments.

Comparison of Control Performance according to the Injection Voltage Waveform of the Harmonic Voltage Injection Sensorless Technique (주입 전압파형의 형상에 따른 고조파 주입 센서리스 기법의 제어 성능 비교)

  • Moon, Kyeong-Rok;Lee, Dong-Myung
    • Journal of IKEEE
    • /
    • v.26 no.1
    • /
    • pp.43-49
    • /
    • 2022
  • This paper compares the sensorless control performance according to the applied voltage waveform by injecting sinusoidal, triangular, and square waveform in the harmonic injection sensorless control method. By injecting various voltage shape waveform with a frequency of 1kHz, the error amount of the estimated angle for each waveform is compared and analyzed. For the experiment, the HILS(hardware in the loop simulation) system was used. The hardware is the control board, and the inverter and motor models implemented in Simulik are located in the real-time simulator. The control algorithm is implemented by the FPGA control board, which includes a PWM interrupt service routine with a frequency of 10 kHz, harmonic injection and position detection sensorless algorithm.

Speed Sensorless Vector Control of Induction Motor Using MATLAB/SIMULINK and dSPACE DS1104 (MATLAB/SIMULINK와 dSPACE DS1104를 이용한 유도 전동기의 속도 센서리스 벡터제어)

  • Lee, Dong-Min;Lee, Yong-Suk;Ji, Jun-Keun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.8 no.2
    • /
    • pp.212-218
    • /
    • 2007
  • This paper presents a implementation of speed sensorless vector control of induction motor using MATLAB/SIMULINK and dSPACE DS1104. Proposed flux estimation algorithm, which utilize the combination of the voltage model based on stator equivalent model and the current model based on rotor equivalent model, enables stable estimation of rotor flux. Proposed rotor speed estimation algorithm utilizes the estimated flux. And the estimated rotor speed is used to speed control of induction motor. Overall system consists of speed controller, current controller, and flux controller using the most general PI controller. Speed sensorless vector control algorithm is implemented as block diagrams using MATLAB/SIMULINK. And realtime control is performed by dSPACE DS1104 control board and Real-Time-Interface(RTI).

  • PDF

A Study on a Novel PMSM Sensorless Control Scheme Based on Back-emf Phase (역기전력 위상을 기초로 한 PMSM의 새로운 센서리스 제어기법에 관한 연구)

  • 이정준;박성준;황상문;정의봉;김철우
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.7 no.6
    • /
    • pp.579-586
    • /
    • 2002
  • With increase of servo motor in industrial and home application, a number of papers related to PMSM control have been researched. Among them, sensorless control schemes are especially concerned in a view point of their cost reduction. In a conventional approach, a rotor position is generally estimated by the integration of estimated rotor speed. In this method, because of their tight relationship between the amplitude of back-emf and rotor position, it is somewhat difficult to find two parameters at the same time. To solve this problem, a novel sensorless control scheme is proposed. It utilizes a back-emf normalization, so that it does not require the variables related with the amplitude of back-emf. The validity of the proposed control scheme is verified through experimental results.

Sensorless Control of Brushless DC Motors Using a Frequency-Independent Phase Shifter (주파수불변 위상지연기를 사용한 BLDCM의 센서리스제어)

  • Jeong, Du-Hui;Ha, In-Jung
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.37 no.2
    • /
    • pp.85-95
    • /
    • 2000
  • This paper describes a sensorless control scheme for brushless dc motors(BLDCMs) using a phase shifter(FIPS) which can shift the zero-crossing point of the input signal with a specified amount of phase. The detection performance of the proposed FIPS is independent of the frequency of the input signal and quite robust with respect to the measurement noise. It is shown that the proposed sensorless control scheme using the FIPS is more effective in the respects of noise-robustness and cost than the previously known schemes. The generality and practicality of the proposed sensorless control scheme is demonstrated through performance analysis and experiments under various operating conditions.

  • PDF