• Title/Summary/Keyword: Sensorless

Search Result 1,003, Processing Time 0.026 seconds

Influence of Resistance Error to the Bandwidth of Back-EMF Estimation based SMPMSM Sensorless Drives (역기전력 추정 기반 SMPMSM 센서리스 드라이브에서 저항 오차가 대역폭에 미치는 영향)

  • Kim, Jae-Suk;Sul, Seung-Ki
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.21 no.5
    • /
    • pp.418-426
    • /
    • 2016
  • This paper analyzes the effect of resistance error to the performance of sensorless drive system of surface-mounted permanent magnet synchronous machine (SMPMSM) based on the back-EMF observer. The analysis shows that the bandwidth of the entire sensorless drive system decreased in the low-speed region when using smaller resistance value than the actual one in the back-EMF observer. Even if the back-EMF observer invokes estimation error, the entire sensorless drive system does not make any steady-state position error. These characteristics may have positive effects such as extension of the low speed limit that goes further down in the sensorless drive. The validity of the analysis is verified by the experimental setup comprising the MG set.

Sensorless Speed Control of PMSM Based on Novel Adaptive Control with Compensated Parameters (새로운 보상 파라미터를 가지는 적응제어 기반 영구자석 동기전동기의 센서리스 속도제어)

  • Nam, Kee-Hyun;Kwon, Young-Ahn
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.7
    • /
    • pp.956-962
    • /
    • 2013
  • Recently, sensorless controls, which eliminate position and speed sensor in a permanent magnet synchronous motor drive, have been much studied. Most sensorless control algorithms are based on the back-EMF and speed estimations which are obtained from the voltage equations. Therefore, the sensorless control performance is largely affected by the parameter errors of a motor. This paper investigates a novel adaptive control with the parameter error compensation for the speed sensorless control of a permanent magnet synchronous motor. The proposed parameter estimation is obtained from the d-axis current error between the real and estimated currents. The proposed algorithm is verified through the simulation and experimentation.

Sensorless Control of PMSM by using MRAS Method (MRAS 방식을 이용한 PMSM 센서리스 제어)

  • Joo, Kyoung-Jin;Kim, Jong-Moo;Ahn, Ho-Gyun
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.1011_1012
    • /
    • 2009
  • Low costed position sensor or sensorless control method is generally used in the motor control for home appliance because of the material cost and manufacture standard restriction. In conventional sensorless method, the stator resistance and back-EMF coefficient are varied by the motor speed and load torque variation. Therefore, position error occurred when the motor is operated by sensorless control method because of these variations. In this paper, the compensation method is proposed for sensorless position error using the MRAS method and compared with the other sensorless control method.

  • PDF

Sensorless control of Switched Reluctance Motor for Electric AC Compressors of Electrical Vehicles (전기자동차 용 전동식 컴프레서를 위한 스위치드 릴럭턴스 모터의 센서리스 제어)

  • Jeon, Yong-Hee;Kim, Jaehyuck
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.28 no.10
    • /
    • pp.37-42
    • /
    • 2014
  • This paper discusses study of sensorless control of a variable speed switched reluctance motor (SRM) for electric AC compressors on electrical vehicles. A typical SRM drive requires a position sensor such as an encoder or hall sensor to measure the angular rotor position. However, harsh environment in electrical AC compressors for electric vehicles makes it difficult to use the position sensor in their motor drive system. Therefore, a sensorless control scheme for electric compressor motors utilizing magnetic characteristics of SRM with respect to position angle and phase current is proposed. The overall variable speed SRM drive with position sensorless control scheme has been modeled using Matlab/Simulink software and closed loop current control simulation is presented to validate the proposed sensorless drive control.

Method for Improving stability of IPMSM Sensorless Control in Relation No Signal about High Frequency voltage (고주파 주입 신호가 없는 IPMSM 센서리스 제어 안정성 향상을 위한 방안)

  • Cho, Tae-Ho;Joo, Kyoung-Jin;Park, Hyun-Jong;Kim, Chang-Hyun;lee, Ju
    • Proceedings of the KIEE Conference
    • /
    • 2015.07a
    • /
    • pp.850-851
    • /
    • 2015
  • In this paper, it employs IPMSM sensorless methods about current model and Extend-EMF methods. By using a MATLAB/Simulink program, it presents sensorless method in relation No high frequency voltage and replaces current based sensorless method. This IPMSM motor is drived by MTPA and Flux weakening controls for adjusting a actual motor application. In order to improving stability of IPMSM sensorless control, method about Sensorless estimation change is suggested by this paper.

  • PDF

Sensorless Speed Control of Induction Motor by an Improved Sliding Mode Observer (개선된 슬라이딩 모드 관측기에 의한 유도전동기의 센서리스 속도제어)

  • Jang, Min-Young;Kim, Sang-Kyoon;Kwon, Young-Ahn
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.9
    • /
    • pp.1552-1554
    • /
    • 2008
  • Recently, sensorless induction motor drives have been much studied due to several advantages. Sensorless drives eliminate the additional mounting space, increase the reliability in harsh environments, and reduce the cost of a motor. This paper investigates an improved sliding mode observer for the sensorless speed control of an induction motor. The proposed control strategy is the sliding mode observer with a variable boundary layer for a low-chattering and fast-response control. The proposed sensorless-algorithm is verified through the simulation and experimentation.

The study on the sensorless PMSM control using the superposition theory (중첩의 정리를 이용한 PMSM의 센서리스 제어)

  • Park, Hyun-Ju;Park, Sung-Jun;Kim, Jong-Dal;Shon, Mu-Heon;Kim, Gyu-Seob;Lee, Yil-Chun
    • Proceedings of the KIEE Conference
    • /
    • 2001.07e
    • /
    • pp.120-126
    • /
    • 2001
  • This paper presents a solution to control a PMSM(Permanent Magnet Synchronous Motor) without sensor. The control method is the presented superposition principle. This method of sensorless theory is very simple to compute estimated angle. The use of this system yields enhanced operations, fewer system components, lower system costs, efficient energy control system designs and increased efficiencies. A practical solution is described and its results are given in this study. The performance of a sensorless architecture allows an intelligent approach to reduce the complete system costs of digital motion control applications using the cheaper electrical sensorless motors. This paper deals with an overview of solutions in the sensorless PMSM control applications, whereby the focus will be the new sensorless controller and its applications.

  • PDF

Performance Improvement of Slotless SPMSM Position Sensorless Control in Very Low-Speed Region

  • Iwata, Takurou;Morimoto, Shigeo;Inoue, Yukinori;Sanada, Masayuki
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • v.2 no.2
    • /
    • pp.184-189
    • /
    • 2013
  • This paper proposes a method for improving the performance of a position sensorless control system for a slotless surface permanent magnet synchronous motor (SPMSM) in a very low-speed region. In position sensorless control based on a motor model, accurate motor parameters are required because parameter errors would affect position estimation accuracy. Therefore, online parameter identification is applied in the proposed system. The error between the reference voltage and the voltage applied to the motor is also affect position estimation accuracy and stability, thus it is compensated to ensure accuracy and stability of the sensorless control system. In this study, two voltage error compensation methods are used, and the effects of the compensation methods are discussed. The performance of the proposed sensorless control method is evaluated by experimental results.

Performance Improvement of High Speed Operation for Sensorless based Synchronous Machine (회전자 위치센서 없는 동기전동기의 고속 운전 성능 개선)

  • Jung, Young-Seok
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.21 no.6
    • /
    • pp.439-444
    • /
    • 2018
  • The performance improvement in the high speed region for the sensorless based synchronous machine drive is discussed in the paper. Conventional dynamic overmodulation method in the vector controlled AC driver requires some calculation of maximum amplitude of the applying voltage vector to limit its amplitude, which leads to increase the calculation time of microprocessor. For low performance microprocessor, this might be impossible to complete the control loop within limited control time. Thus, to reduce the calculation time, the constantly limited amplitude for applying voltage vector is tried in this paper to drive sensorless based synchronous motor. Certainly, there exists some errors in amplitude and phase angle between inverter voltage and calculating voltage in the sensorless algorithm. But, this errors are too small to prevent the high speed sensorless operation within overmodulation region. The validities of the proposed method is proved by the experimental results.

Sensorless Control Using the Back EMF of PM Generator for 2MW Variable Speed Wind Turbine (역기전력을 이용한 2MW급 가변속 풍력터빈용 영구자석 동기기의 센서리스 제어)

  • Im, Ji-Hoon;Oh, Sang-Geun;Song, Seung-Ho;Lee, Hyen-Young;Kwon, Oh-Jeong;Jang, Jeong-Ik;Lee, Kwon-Hee
    • Journal of Wind Energy
    • /
    • v.2 no.2
    • /
    • pp.54-60
    • /
    • 2011
  • A PMSG in variable speed wind turbine needs to know the position of rotor for vector control. Since the position sensor has the disadvantage in terms of cost, complexity of the system, a sensorless algorithm is needed. The sensorless strategy using the back EMF estimation is used for PMSG Wind Turbine. This algorithm is comparatively easy to implement than other strategies. This paper introduces the application of stable sensorless control for 2MW direct drive PMSG. In order to confirm the sensorless algorithm, the implementation is proceeded using 2MW direct drive PMSG from no-load condition to full-load condition. To drive 2MW PMSG artificially, 2MW PMSG connected PMSG through the mechanical coupling.