• Title/Summary/Keyword: Sensorimotor cortex

Search Result 33, Processing Time 0.033 seconds

Sungshim-san-mediated Recovery of Cognition and Motor Function in the Severe Rat Stroke, Permanent Middle Cerebral Artery Occlusion Model (성심산(醒心散)의 중대뇌동맥 폐쇄로 유발된 허혈성 뇌손상 백서(白鼠)에 대한 인지 및 운동기능 회복 촉진효과)

  • Lee, Kyung-Seok;Chung, Dae-Kyoo
    • Journal of Oriental Neuropsychiatry
    • /
    • v.26 no.3
    • /
    • pp.319-336
    • /
    • 2015
  • Objectives: The object of this study was to evaluate the cognition and motor function recovery effects of Sungshim-san (SSS), a traditional Korean cardio-protective polyherbal formula in the severe rat stroke, permanent middle cerebral artery occlusion (pMCAO) model. Methods: The experimental animals were divided into 6 groups. SSS aqueous extracts (yield=16.82%; 400, 200 and 100 mg/kg) were administered orally by using Sonde, once daily, for 28 continuous days from 24 hrs post-pMCAO. Donepezil 10 mg/kg, a representative drug for dementia, was used as a reference drug. The body weight changes, infarct/defect sizes, sensorimotor function and cognitive motor behavior were serially monitored. Limb placing and body-swing test for sensorimotor functions were conducted at 1 day before operation (base line), and 1, 3, 7, 14, 21 and 28 days post-pMCAO; and water maze test for the cognitive motor behavior was conducted at 14 and 28 days post-pMCAO, respectively. Results: Focal cerebral cortex infarct and defects due to pMCAO resulted in marked decreases of body weight, disorders of sensorimotor functions and cognitive motor behaviors. However, the pMCAO-related ischemic damages were markedly and dose-dependently inhibited by treatment with SSS 400 and 200 mg/kg, respectively. Donepezil markedly decreased the body weight and gains, as compared with pMCAO control rats; however, SSS 400 and 200 mg/kg favorably ameliorated the pMCAO-induced decreases in body weight and gains. SSS 100 mg/kg treated rats did not show any favorable effects on the pMCAO-related ischemic damages, as compared with pMCAO control rats. Conclusions: The results of the study indicated that oral administration of SSS 400 and 200 mg/kg accelerated cognition and motor function recovery in the rat pMCAO model. The treatment effect was potentially mediated by neuroprotection via the known augmentation of cerebral antioxidant defense system of SSS itself or its individual herbal components. Especially, the overall effects of SSS 200 mg/kg were similar to those of donepezil 10 mg/kg, but less toxic.

Low Frequency Fluctuation Component Analysis in Active Stimulation fMRI Paradigm (활성자극 파라다임 fMRI에서 저주파요동 성분분석)

  • Na, Sung-Min;Park, Hyun-Jung;Chang, Yong-Min
    • Investigative Magnetic Resonance Imaging
    • /
    • v.14 no.2
    • /
    • pp.115-120
    • /
    • 2010
  • Purpose : To separate and evaluate the low frequency spontaneous fluctuation BOLD signals from the functional magnetic resonance imaging data using sensorimotor active task. Materials and Methods : Twenty female archery players and twenty three control subjects were included in this study. Finger-tapping task consisted of three cycles of right finger tapping, with a subsequent 30 second rest. Blood oxygenation level-dependent (BOLD) data were collected using $T2^*$-weighted echo planar imaging at a 3.0 T scanner. A 3-D FSPGR T1-weighted images were used for structural reference. Image processing and statistical analyses were performed using SPM5 for active finger-tapping task and GIFT program was used for statistical analyses of low frequency spontaneous fluctuation BOLD signal. Results : Both groups showed the activation in the left primary motor cortex and supplemental motor area and in the right cerebellum for right finger-tapping task. ICA analysis using GIFT revealed independent components corresponding to contralateral and ipsilateral sensorimotor network and cognitive-related neural network. Conclusion : The current study demonstrated that the low frequency spontaneous fluctuation BOLD signals can be separated from the fMRI data using finger tapping paradigm. Also, it was found that these independent components correspond to spontaneous and coherent neural activity in the primary sensorimotor network and in the motor-cognitive network.

Acupuncture stimulation for motor cortex activities: Evidence from 3T functional MRI study

  • 최보영;전신수;유승식;최기순;박상동;임은철;정성택;이형구;서태석
    • Proceedings of the Korean Society of Medical Physics Conference
    • /
    • 2003.09a
    • /
    • pp.75-75
    • /
    • 2003
  • Purpose: To investigate whether or not acupuncture of GB34 produces a significant response of the modulation of somatomotor areas by functional magnetic resonance imaging (fMRI) study. Methods: The acupoint, GB34, located in the back of the knee, is known to be effective in recovering motor function after stroke. Using 3T MRI scanner, functional MR imaging of the whole brain was performed in 12 normal healthy subjects during two stimulation paradigms; acupuncture manipulation on GB 34 and sham points. This study investigates the activation of the motor cortex elicited by a soft and an intensified stimulation of GB 34. Three different paradigms were carried out to detect any possible modulation of the Blood Oxygenation Level Dependent (BOLD) response in the somatomortor area to motor stimulation through acupuncture. Results: Group analysis from seven individuals showed that bilateral sensorimotor areas (BA 3,4,6 and 7) showed stimulation related BOLD signal contrast of approximately 6% whereas very few areas were activated when sham stimulation is given. Conclusions: The present study shows that acupuncture fMRI study can be safely conducted in 3T MRI environment, and acupuncture stimulation in GB34 modulates the cortical activities of the soma- to motor area in human. The present findings may shed light on the CNS mechanism of motor function by acupuncture and form a basis for future investigations of motor modulation circuits in the stroke patients. Acknowledgement: This study was supported by a grant of the Mid and Long Term Nuclear RID Plan Program, Ministry of Science and Technology, Republic of Korea.

  • PDF

Acupuncture Stimulation for Motor Cortex Activities: Evidence from 3T Functional MRI Study

  • Choe, Bo-Young;Jeun, Sin-Soo;Kang, Sei-Kown;Park, Gi-Soon;Chung, Sung-Taek;Yoo, Seung-Schik;Chu, Myung-Ja;Lee, Hyoung-Koo;Suh, Tae-Suk
    • Proceedings of the Korean Society of Medical Physics Conference
    • /
    • 2002.09a
    • /
    • pp.352-355
    • /
    • 2002
  • The purpose of this study was to investigate whether or not acupuncture of GB34 produces a significant response of the modulation of somatomotor areas by functional magnetic resonance imaging (fMRI) study. The acupoint, GB34, located in the back of the knee, is known to be effective in recovering motor function after stroke. Using 3T MRI scanner, functional MR imaging of the whole brain was performed in 12 normal healthy subjects during two stimulation paradigms; acupuncture manipulation on GB 34 and sham points. This study investigates the activation of the mortor cortex elicited by a soft and an intensified stimulation of GB 34. Three different paradigms were carried out to detect any possible modulation of the Blood Oxygenation Level Dependent (BOLD) response in the somatomortor area to motor stimulation through acupuncture. Group analysis from seven individuals showed that bilateral sensorimotor areas (BA 3,4,6 and 7) showed stimulation related BOLD signal contrast of approximately 6% whereas very few areas were activated when sham stimulation is given. The present study shows that acupuncture fMRI study can be safely conducted in 3T MRI environment, and acupuncture stimulation in GB34 modulates the cortical activities of the somatomotor area in human. The present findings may shed light on the CNS mechanism of motor function by acupuncture and form a basis for future investigations of motor modulation circuits in the stroke patients.

  • PDF

Functional Magnetic Resonance Imaging with Arterial Spin Labeling: Techniques and Potential Clinical and Research Applications

  • Kim, Ju Ho;Choi, Dae Seob;Park, Sung Eun;Choi, Ho Cheol;Kim, Seong Hu
    • Investigative Magnetic Resonance Imaging
    • /
    • v.21 no.2
    • /
    • pp.91-96
    • /
    • 2017
  • Purpose: To describe technical methods for functional magnetic resonance imaging (fMRI) study with arterial spin labeling (ASL) compared to blood oxygenation level-dependent (BOLD) technique and discuss the potential of ASL for research and clinical practice. Materials and Methods: Task-based (n = 1) and resting-state fMRI (rs-fMRI) (n = 20) were performed using ASL and BOLD techniques. Results of both techniques were compared. Results: For task-based fMRI with finger-tapping, the primary motor cortex of the contralateral frontal lobe and the ipsilateral cerebellum were activated by both BOLD and ASL fMRI. For rs-fMRI of sensorimotor network, functional connectivity showed similar results between BOLD and ASL. Conclusion: ASL technique has potential application in clinical and research fields because all brain perfusion imaging, CBF measurement, and rs-fMRI study can be performed in a single acquisition.

Change of activation of the supplementary motor area in motor learning: an fMRI case study (운동학습에 따른 대뇌 보조운동영역의 활성화 변화: fMRI 사례연구)

  • Park, Min-Chull;Bae, Sung-Soo;Lee, Mi-Young
    • The Journal of Korean Physical Therapy
    • /
    • v.23 no.2
    • /
    • pp.85-90
    • /
    • 2011
  • Purpose: The contribution of the supplementary motor area (SMA) to the control of voluntary movement has been revealed. We investigated the changesin the SMA for motor learning of the reaching movement in stroke patient using functional MRI. Methods: The subject was a right-handed 55 year-old woman with left hemiparesis due to an intracerebral hemorrhage. She performed reaching movement during fMRI scanning before and after reaching training in four weeks. The motor assessment scale and surface EMG were used to evaluate the paretic upper limb function and muscle activation. Results: In the fMRI result, contralateral primary sensorimotor cortex (SM1) was activated before and after training. SMA was only activated after training. In addition, muscle activation of the paretic upper limb was similar to that of the unaffected upper limb after training. Conclusion: These findings suggest SMA is related to the execution of a novel movement pattern resulting in motor learning in stroke patients.

Ipsilateral Cerebral and Contralateral Cerebellar Hyperperfusion in Patients with Unilateral Cerebral Infarction; SPM Analysis (일측 뇌경색 환자에서 반대측 뇌의 보상성 뇌관류 증가에 대한 SPM 분석)

  • Hong, Sun-Pyo;Yoon, Joon-Kee;Choi, Bong-Hoi;Joo, In-Soo;Yoon, Seok-Nam
    • Nuclear Medicine and Molecular Imaging
    • /
    • v.42 no.5
    • /
    • pp.347-353
    • /
    • 2008
  • Purpose: Cortical reorganization has an important role in the recovery of stroke. We analyzed the compensatory cerebral and cerebellar perfusion change in patients with unilateral cerebral infarction using statistical parametric mapping (SPM). Materials and Methods: Fifty seven $^{99m}TC-Ethylene$ Cystein Diethylester (ECD) cerebral perfusion SPECT images of 57 patients (male/female=38/19, mean age=$56{\pm}17\;years$) with unilateral cerebral infarction were evaluated retrospectively. Patients were divided into subgroups according to the location (left, right) and the onset (acute, chronic) of infarction. Each subgroup was compared with normal controls (male/female=11/1, mean age=$36{\pm}10\;years$) in a voxel-by-voxel manner (two sample t-test, p<0.001) using SPM. Results: All 4 subgroups showed hyperperfusion in the ipsilateral cerebral cortex, but not in the contralateral cerebral cortex. Chronic left and right infarction groups revealed hyperperfusion in the ipsilateral primary sensorimotor cortex, meanwhile, acute subgroups did not. Contralateral cerebellar hyperperfusion was also demonstrated in the chronic left infarction group. Conclusion: Using $^{99m}Tc-ECD$ SPECT, we observed ipsilateral cerebral and contralateral cerebeller hyperperfusion in patients with cerebral infarction. However, whether these findings are related to the recovery of cerebral functions should be further evaluated.

Differences in Large-scale and Sliding-window-based Functional Networks of Reappraisal and Suppression

  • Jun, Suhnyoung;Lee, Seung-Koo;Han, Sanghoon
    • Science of Emotion and Sensibility
    • /
    • v.21 no.3
    • /
    • pp.83-102
    • /
    • 2018
  • The process model of emotion regulation suggests that cognitive reappraisal and expressive suppression engage at different time points in the regulation process. Although multiple brain regions and networks have been identified for each strategy, no articles have explored changes in network characteristics or network connectivity over time. The present study examined (a) the whole-brain network and six other resting-state networks, (b) their modularity and global efficiency, which is an index of the efficiency of information exchange across the network, (c) the degree and betweenness centrality for 160 brain regions to identify the hub nodes with the most control over the entire network, and (d) the intra-network and inter-network functional connectivity (FC). Such investigations were performed using a traditional large-scale FC analysis and a relatively recent sliding window correlation analysis. The results showed that the right inferior orbitofrontal cortex was the hub region of the whole-brain network for both strategies. The present findings of temporally altering functional activity of the networks revealed that the default mode network (DMN) activated at the early stage of reappraisal, followed by the task-positive networks (cingulo-opercular network and fronto-parietal network), emotion-processing networks (the cerebellar network and DMN), and sensorimotor network (SMN) that activated at the early stage of suppression, followed by the greater recruitment of task-positive networks and their functional connection with the emotional response-related networks (SMN and occipital network). This is the first study that provides neuroimaging evidence supporting the process model of emotion regulation by revealing the temporally varying network efficiency and intra- and inter-network functional connections of reappraisal and suppression.

Measurement of the occipital alpha rhythm and temporal tau rhythm by using magnetoencephalography

  • Kim, J.E.;Gohel, Bakul;Kim, K.;Kwon, H.;An, Kyung-min
    • Progress in Superconductivity and Cryogenics
    • /
    • v.17 no.4
    • /
    • pp.34-37
    • /
    • 2015
  • Developing Magnetoencephalography (MEG) based on Superconducting Quantum Interference Device (SQUID) facilitates to observe the human brain functions in non-invasively and high temporal and high spatial resolution. By using this MEG, we studied alpha rhythm (8-13 Hz) that is one of the most predominant spontaneous rhythm in human brain. The 8-13 Hz rhythm is observed in several sensory region in the brain. In visual related region of occipital, we call to alpha rhythm, and auditory related region of temporal call to tau rhythm, sensorimotor related region of parietal call to mu rhythm. These rhythms are decreased in task related region and increased in task irrelevant regions. This means that these rhythms play a pivotal role of inhibition in task irrelevant region. It may be helpful to attention to the task. In several literature about the alpha-band inhibition in multi-sensory modality experiment, they observed this effect in the occipital and somatosensory region. In this study, we hypothesized that we can also observe the alpha-band inhibition in the auditory cortex, mediated by the tau rhythm. Before that, we first investigated the existence of the alpha and tau rhythm in occipital and temporal region, respectively. To see these rhythms, we applied the visual and auditory stimulation, in turns, suppressed in task relevant regions, respectively.

Effect of Valeriana fauriei Extract on the Neurodevelopmental Proteins Expression and Behavioral Patterns in Maternal Immune Activation Animal Model (쥐오줌풀 추출물이 MIA동물모델에서의 신경발달 단백질의 발현과 행동증상에 미치는 영향)

  • Won, Hansol;Kim, Young Ock;Lee, Hwayoung;Im, Jiyun;Lee, Sanghyun;Cho, Ik Hyun;Lee, Sang Won;Park, Chun Geun;Kim, Hyung Ki;Kwon, Jun Tack;Kim, Hak Jae
    • Korean Journal of Medicinal Crop Science
    • /
    • v.24 no.5
    • /
    • pp.341-350
    • /
    • 2016
  • Background: Prenatal exposure to infectious and/or inflammatory insults can increase the risk of developing neuropsychiatric disorder such as bipolar disorder, autism, and schizophrenia later in life. We investigated whether Valeriana fauriei (VF) treatment alleviates prepulse inhibition (PPI) deficits and social interaction impairment induced by maternal immune activation (MIA). Methods and Results: Pregnant mice were exposed to polyriboinosinic-polyribocytidilic acid (5 mg/kg, viral infection mimic) on gestational day 9. The adolescent offspring received daily oral treatment with VF (100 mg/kg) and injections of clozapine (5 mg/kg) for 30 days starting on the postnatal day 35. The effects of VF extract treatment on behavioral activity impairment and protein expression were investigated using the PPI analysis, forced swim test (FST), open field test (OFT), social interaction test (SIT), and immunohistochemistry. The MIA-induced offspring showed deficits in the PPI, FST, OFT, and SIT compared to their non MIA-induced counterparts. Treatment with the VF extract significantly recovered the sensorimotor gating deficits and partially recovered the aggressive behavior observed in the SIT. The VF extract also reversed the downregulation of protein expression induced by MIA in the medial prefrontal cortex. Conclusions: Our results provide initial evidence of the fact that the VF extract could reverse MIA-induced behavioral impairment and prevent neurodevelopmental disorders such as schizophrenia.