• Title/Summary/Keyword: Sensor-based Path Planning

Search Result 59, Processing Time 0.021 seconds

Sensor Fusion-Based Semantic Map Building (센서융합을 통한 시맨틱 지도의 작성)

  • Park, Joong-Tae;Song, Jae-Bok
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.17 no.3
    • /
    • pp.277-282
    • /
    • 2011
  • This paper describes a sensor fusion-based semantic map building which can improve the capabilities of a mobile robot in various domains including localization, path-planning and mapping. To build a semantic map, various environmental information, such as doors and cliff areas, should be extracted autonomously. Therefore, we propose a method to detect doors, cliff areas and robust visual features using a laser scanner and a vision sensor. The GHT (General Hough Transform) based recognition of door handles and the geometrical features of a door are used to detect doors. To detect the cliff area and robust visual features, the tilting laser scanner and SIFT features are used, respectively. The proposed method was verified by various experiments and showed that the robot could build a semantic map autonomously in various indoor environments.

Sensor-Based Path Planning for Planar Two-identical-Link Robots by Generalized Voronoi Graph (일반화된 보로노이 그래프를 이용한 동일 두 링크 로봇의 센서 기반 경로계획)

  • Shao, Ming-Lei;Shin, Kyoo-Sik
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.12
    • /
    • pp.6986-6992
    • /
    • 2014
  • The generalized Voronoi graph (GVG) is a topological map of a constrained environment. This is defined in terms of workspace distance measurements using only sensor-provided information, with a robot having a maximum distance from obstacles, and is the optimum for exploration and obstacle avoidance. This is the safest path for the robot, and is very significant when studying the GVG edges of highly articulated robots. In previous work, the point-GVG edge and Rod-GVG were built with point robot and rod robot using sensor-based control. An attempt was made to use a higher degree of freedom robot to build GVG edges. This paper presents GVG-based a new local roadmap for the two-link robot in the constrained two-dimensional environment. This new local roadmap is called the two-identical-link generalized Voronoi graph (L2-GVG). This is used to explore an unknown planar workspace and build a local roadmap in an unknown configuration space $R^2{\times}T^2$ for a planar two-identical-link robot. The two-identical-link GVG also can be constructed using only sensor-provided information. These results show the more complex properties of two-link-GVG, which are very different from point-GVG and rod-GVG. Furthermore, this approach draws on the experience of other highly articulated robots.

Development of OMM Module for PC-NC System (PC-NC 를 위한 기상측정 모듈 개발)

  • 윤길상;권양훈;정석우;조명우
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.8
    • /
    • pp.144-152
    • /
    • 2003
  • The purpose of this paper is to establish an effective inspection system by using OMM (On-Machine Measurement) system based PC-NC. This system can reduce manufacturing lead time because part is inspected each process. Inspection process planning is accomplished by determining the number of measuring points, their location, measuring path using fuzzy logic, Hammersley method, traveling salesperson problem. Inspection with contacted sensor improve quality as inspection feature is developed to based machining feature. This method is tested by simulation and experiment, then analyzed measuring data and geometry tolerance.

Amorphous Obstacle Avoidance Based on APF Methods for Local Path Planning (국소 경로 계획법을 위한 APF 기반의 무정형 장애물 회피 연구)

  • Lee, Jong-Yeon;Jung, Hah-Min;Kim, Dong-Hun
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.21 no.1
    • /
    • pp.19-24
    • /
    • 2011
  • This paper presents a method about amorphous obstacles avoidance for local path planning in the two-dimensional sensor environment. In particular, the proposed method is extended from some of the recent studies about a point obstacle avoidance. In the paper, repulsive forces of two types are proposed in order that the robot avoids from the amorphous obstacle with various size and form. A judgment of curvatures in the proposed method simplifies the recognition of obstacles to make the path-planning efficient. In addition, the line of sight(LOS) and the range of recognition are considered in the environment. By simulation results, the proposed method for amorphous obstacle avoidance shows better performance than the related existing method and we confirmed advantages of proposed method.

A Study on Walking Stabilization and Path Tracking of Biped Robot Using RFID (이족 보행 로봇의 보행 안정화 및 RFID를 이용한 경로 추종에 관한 연구)

  • Park, Jong-Han;Kim, Yong-Tae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.23 no.1
    • /
    • pp.51-56
    • /
    • 2013
  • In order to apply a biped robot in real world, the robot requires a robust walking and a function of localization, path planning and navigation. Recently, localization and path planning using RFID of mobile robot has been studying. However, when the biped robot walks, it has unstability and tends to leave the path. In the paper we propose a method of walking stabilization using FSR(Force Sensing Resistor), Gyro and accelerometer for the real biped robot. Also a path tracking algorithm using RFID sensor attached in robot's foot is proposed based on localization of the robot. The proposed algorithm is verified from walking experiments using real biped robot on uneven terrain and path tracking experiments on the RFID environments.

An Autonomous Mobile System based on Detection of the Road Surface Condition (노면 상태 검출에 기반한 자율 주행 시스템)

  • Jeong, Hye-C.;Seo, Suk-T.;Lee, Sang-H.;Lee, In-K.;Kwon, Soon-H.
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.18 no.5
    • /
    • pp.599-604
    • /
    • 2008
  • Recently, many researches for autonomous mobile system have been proposed, which can recognize surrounded environment and navigate to destination without outside intervention. The basic sufficient condition for the autonomous mobile system is to navigate to destination safely without accident. In this paper, we propose a path planning method in local region for safe navigation of autonomous system through evaluation of the road surface distortion(damaged/deformed road, unpaved road, obstacle and etc.). We use laser distance sensor to get the information on the road surface distortion and apply image binalization method to evaluate safe region in the detected local region. We show the validity of the proposed method through the computer simulation based on the artificial local road map.

A study on Moving OBstacle Avoidance for an Intelligent Vehicle Using Fuzzy Controller (퍼지 제어기를 이용한 지능형 차량의 이동장애물 회피에 관한 연구)

  • Kim, Hun-Mo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.6 no.2
    • /
    • pp.155-163
    • /
    • 2000
  • This paper presents a path planning method of the sensor based intelligent vehicle using fuzzy logic controller for avoidance of moving obstacles in unknown environments. Generally it is too difficult and complicated to control intelligent vehicle properly by recognizing unknown terrain with sensors because the great amount of imprecise and ambiguous information has to be considered. In this respect a fuzzy logic can manage such the enormous information in a quite efficient manner. Furthermore it is necessary to use the relative velocity to consider the mobility of obstacles, In order to avoid moving obstacles we must deliberate not only vehicle's relative speed toward obstacles but also self-determined acceleration and steering for the satisfaction of avoidance efficiency. In this study all the primary factors mentioned before are used as the input elements of fuzzy controllers and output signals to control velocity and steering angle of the vehicle. The main purpose of this study is to develop fuzzy controllers for avoiding collision with moving obstacles when they approach the vehicle travelling with straight line and for returning to original trajectory. The ability are and effectiveness of the proposed algorithm are demonstrated by simulations and experiments.

  • PDF

Development of Autonomous Algorithm for Boat Using Robot Operating System (로봇운영체제를 이용한 보트의 자율운항 알고리즘 개발)

  • Jo, Hyun-Jae;Kim, Jung-Hyeon;Kim, Su-Rim;Woo, Ju-Hyun;Park, Jong-Yong
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.58 no.2
    • /
    • pp.121-128
    • /
    • 2021
  • According to the increasing interest and demand for the Autonomous Surface Vessels (ASV), the autonomous navigation system is being developed such as obstacle detection, avoidance, and path planning. In general, autonomous navigation algorithm controls the ship by detecting the obstacles with various sensors and planning path for collision avoidance. This study aims to construct and prove autonomous algorithm with integrated various sensor using the Robot Operating System (ROS). In this study, the safety zone technique was used to avoid obstacles. The safety zone was selected by an algorithm to determine an obstacle-free area using 2D LiDAR. Then, drift angle of the ship was controlled by the propulsion difference of the port and starboard side that based on PID control. The algorithm performance was verified by participating in the 2020 Korea Autonomous BOAT (KABOAT).

Reliable Autonomous Reconnaissance System for a Tracked Robot in Multi-floor Indoor Environments with Stairs (다층 실내 환경에서 계단 극복이 가능한 궤도형 로봇의 신뢰성 있는 자율 주행 정찰 시스템)

  • Juhyeong Roh;Boseong Kim;Dokyeong Kim;Jihyeok Kim;D. Hyunchul Shim
    • The Journal of Korea Robotics Society
    • /
    • v.19 no.2
    • /
    • pp.149-158
    • /
    • 2024
  • This paper presents a robust autonomous navigation and reconnaissance system for tracked robots, designed to handle complex multi-floor indoor environments with stairs. We introduce a localization algorithm that adjusts scan matching parameters to robustly estimate positions and create maps in environments with scarce features, such as narrow rooms and staircases. Our system also features a path planning algorithm that calculates distance costs from surrounding obstacles, integrated with a specialized PID controller tuned to the robot's differential kinematics for collision-free navigation in confined spaces. The perception module leverages multi-image fusion and camera-LiDAR fusion to accurately detect and map the 3D positions of objects around the robot in real time. Through practical tests in real settings, we have verified that our system performs reliably. Based on this reliability, we expect that our research team's autonomous reconnaissance system will be practically utilized in actual disaster situations and environments that are difficult for humans to access, thereby making a significant contribution.

Development of a 3D Localization Algorithm Using Hull Geometry Information (선체 형상 정보를 활용한 3차원 위치인식 알고리즘 개발)

  • Mingyu Jang;Jinhyun Kim
    • Journal of Sensor Science and Technology
    • /
    • v.32 no.5
    • /
    • pp.300-306
    • /
    • 2023
  • A hull-cleaning robot sticks to the surface of a vessel and moves for efficient cleaning. Precise path planning and tracking using the current position is crucial. Many robots rely on the INS algorithm, but errors accumulate. To fix this, GPS, sonar, and USBL are used, though with limitations. Selecting suitable sensors for the surface operation and accurate positioning algorithm are vital. In this study, we developed a robot position estimation algorithm using the structure of a ship. Problems that arise when expanding the 2D position estimation algorithm used in existing wall structures to 3D were evaluated and methods for solving them were proposed. In addition, we aimed to improve performance by deriving singularities that exist in the robot path and proposing an error correction algorithm based on the singularities.