• Title/Summary/Keyword: Sensor storage

Search Result 400, Processing Time 0.026 seconds

An Proxy Trajectory Based Storage in Sensor Networks (센서네트워크에서의 프록시 트라젝토리 기반 데이터 저장 기법)

  • Lim, Hwa-Jung;Lee, Heon-Guil
    • The KIPS Transactions:PartC
    • /
    • v.15C no.6
    • /
    • pp.513-522
    • /
    • 2008
  • Efficient data dissemination is one of the important subjects for sensor networks. High accessibility of the sensed data can be kept by deploying the data centric storage approach in which data is stored over the nodes in the sensor network itself rather than external storages or systems. The advantage of this approach is its direct accessibility in a real-time without the severe burden on delay and power dissipation on the data path to the external storages or systems. However, if the queries from many users are concentrated to the few nodes with data, then the response time could be increased and it could lead to the reduction of network life time by rapid energy dissipation caused by concentrated network load. In this paper, we propose a adaptive data centric storage scheme based on proxy trajectory (APT) mechanism. We highlight the data centric storage mechanism by taking account of supporting large number of users, and make it feasible to provide high-performance accessibility when a non-uniform traffic pattern is offered. Storing data around the localized users by considering spatial data-access locality, the proxy trajectory of APT provides fast response for the users. The trajectory, furthermore, may help the mobile users to roams freely within the area they dwell.

An Adaptive Storage System for Enhancing Data Reliability in Solar-powered Sensor Networks (태양 에너지 기반 센서 네트워크에서 데이터의 안정성을 향상시키기 위한 적응형 저장 시스템)

  • Noh, Dong-Kun
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.36 no.5
    • /
    • pp.360-370
    • /
    • 2009
  • Using solar power in wireless sensor networks requires a different approach to energy optimization from networks with battery-based nodes. Solar energy is an inexhaustible supply which can potentially allow a system to run forever, but there are several issues to be considered such as the uncertainty of energy supply and the constraint of rechargeable battery capacity. In this paper, we present SolarSS: a reliable storage system for solar-powered sensor networks, which provides a set of functions, in separate layers, such as sensory data collection, replication to prevent failure-induced data loss, and storage balancing to prevent depletion-induced data loss. SolarSS adapts the level of layers activated dynamically depending on solar energy availability, and provides an efficient resource allocation and data distribution scheme to minimize data loss.

Electric Field Energy Harvesting Powered Wireless Sensors for Smart Grid

  • Chang, Keun-Su;Kang, Sung-Muk;Park, Kyung-Jin;Shin, Seung-Hwan;Kim, Hyeong-Seok;Kim, Ho-Seong
    • Journal of Electrical Engineering and Technology
    • /
    • v.7 no.1
    • /
    • pp.75-80
    • /
    • 2012
  • In this paper, a new energy harvesting technology using stray electric field of an electric power line is presented. It is found that energy can be harvested and stored in the storage capacitor that is connected to a cylindrical aluminum foil wrapped around a commercial insulated 220 V power line. The average current flowing into 47 ${\mu}F$ storage capacitor is about 4.53 ${\mu}A$ with 60 cm long cylindrical aluminum foil, and it is possible to operate wireless sensor node to transmit RF data every 42 seconds. The harvested average power is about 47 ${\mu}W$ in this case. Since the energy can be harvested without removing insulating sheath, it is believed that the proposed harvesting technology can be applied to power the sensor nodes in wireless ubiquitous sensor network and smart grid system.

Energy-Efficient Storage with Flash Device in Wireless Sensor Networks (무선 센서 네트워크에서 플래시 장치를 활용한 에너지 효율적 저장)

  • Park, Jung Kyu;Kim, Jaeho
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.42 no.5
    • /
    • pp.975-981
    • /
    • 2017
  • In this paper, we propose a method for efficient use of energy when using flash device in WSN environment. Typical Flash devices have a drawback to be an energy efficient storage media in the energy-constrained WSNs due to the high standby energy. An energy efficient approach to deploy Flash devices into WSNs is simply turning the Flash device off whenever idle. In this regard, we make the simple but ideal approach realistic by removing these two obstacles by exploiting nonvolatile RAM (NVRAM), which is an emerging memory technology that provides both non-volatility and byte-addressability. Specifically, we make use of NVRAM as an extension of metadata storage to remove the FTL metadata scanning process that mainly incurs the two obstacles. Through the implementation and evaluation in a real system environment, we verify that significant energy savings without sacrificing I/O performance are feasible in WSNs by turning off the Flash device exploiting NVRAM whenever it becomes idle. Experimental results show that the proposed method consumes only about 1.087% energy compared to the conventional storage device.

On-the-Fly Belief Propagation Decoding of Decentralized Luby Transform Codes for Distributed Storage in a Small-Scale Wireless Sensor Network (소규모 무선 센서 네트워크에서 분산 저장을 위한 LT 부호의 OBP 복호)

  • Cheong, Ho-Young
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.9 no.5
    • /
    • pp.503-510
    • /
    • 2016
  • In this paper I analyzed two decoding algorithms of decentralized LT codes for distributed storage by simulations in small-scale wireless sensor network. From the simulation results we can see that when the decoding ration is above 2.0, the successful decoding probability of OBP decoding is about 99%, while that of BP decoding is below 50% with n=100, and about 70% with n=200. We showed that OBP decoding algorithm is an efficient decoding scheme for decentralized LT codes for distributed storage in small-scale wireless sensor network.

The Measurement of Membrane Deformation Behavior in Kogas Pilot LNG Storage Tank by the use of Mechanical/Electrical Sensor (II) (기계적/전기적 측정 센서를 이용한 Kogas Pilot LNG 저장탱크 멤브레인 변형 거동 측정(II))

  • Kim Y.K.;Hong S.H.;Oh B.T.;Yoon I.S.;Kim J.H.;Kim S.S.
    • 한국가스학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.85-90
    • /
    • 2003
  • Korea Gas Corp. has developed the design technology of the LNG storage tank. The membrane to be applied inside of LNG storage tank is provided with corrugations to absorb thermal contraction and expansion caused by LNG temperature. We constructed strain measurement system by using strain gage. In this paper, some problems which should be considered when measuring strain at $-162^{\circ}C$, are discussed by presenting test results on the characteristics of strain gages, Temperature sensor, adhesive and lead wire. And presenting the procedure of the constructing strain measurement system.

  • PDF

Feasibility Study of Embedded FBG Sensors for the Smart Monitoring of High Pressure Composite Vessel (복합재 고압용기의 스마트 모니터링을 위한 FBG 센서의 삽입 적용성에 관한 연구)

  • Park, Sang-Wuk;Park, Sang-Oh;Kim, Chun-Gon
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2005.04a
    • /
    • pp.33-36
    • /
    • 2005
  • In this research, for the smart health monitoring of the hydrogen storage high pressure composite vessel, the feasibility study of an embedded fiber Bragg grating(FBG) sensor is carried out. To verify strain measurement in various temperature environment which is needed for the hydrogen pressure vessel, tensile test of a composite specimen with both an embedded FBG sensor and a strain gauge is made in low temperature. Before we try a real-size hydrogen storage pressure vessel, a small & cheap composite pressure vessel having the same structure is fabricated with embedded FBG sensors and tested. In the case of an aluminum liner inside the vessel, survivability of FBG sensors at the interface is lower than the other areas.

  • PDF

A Grid-based Efficient Routing Protocol for a Mobile Sink in Wireless Sensor Networks

  • Lee, Taekkyeun
    • Journal of the Korea Society of Computer and Information
    • /
    • v.23 no.2
    • /
    • pp.35-43
    • /
    • 2018
  • In this paper, we propose a grid-based efficient routing protocol for a mobile sink in wireless sensor networks. In the proposed protocol, the network is partitioned into grids and each grid has a grid head. For the efficient routing to a mobile sink, the proposed protocol uses a mobile sink representative node to send the data to a mobile sink and grid heads are used as a mobile sink representative node. Furthermore, the proposed protocol uses nodes in the boundary of the center grid as position storage nodes. The position storage nodes store the position of a mobile sink representative node and provide source nodes with it for data delivery. With these features, the proposed protocol can reduce a lot of overhead to update the position information and improve the delay of data delivery to a mobile sink. The proposed protocol performs better than other protocols in terms of the delay and the energy consumption per node in the performance evaluation.

A tunable inverse-hemisphere-shaped Bragg grating sensor (튜닝가능한 역반구형의 브래그 그레이팅 센서)

  • Ryu, Yunha;Kim, Kyoungsik
    • Transactions of the Society of Information Storage Systems
    • /
    • v.9 no.2
    • /
    • pp.48-50
    • /
    • 2013
  • In this work, we investigated the diffraction of inverse-hemisphere shaped polymer grating. The grating was fabricated by using soft lithography of hexagonally close-packed PS nanospheres. The periodicity of the grating was tuned by swelling in acetone and the diffraction wavelength shift induced from lattice change was measured. This device can be used as a strain gauge or a chemical sensor.

Real Time Temperature Monitoring System Using Optic Fiber Sensor (광섬유 센서를 이용한 실시간 온도 감시 시스템)

  • Lee, Chang-Kun;Kim, Young-Su;Gu, Myeong-Mo;Kim, Bong-Gi
    • Journal of the Korea Society of Computer and Information
    • /
    • v.15 no.12
    • /
    • pp.209-216
    • /
    • 2010
  • Optical Temperature Distribution Sensor Measurement System uses fiber optic sensors itself for temperature measurement is a system which can be measured the Installed surrounding entire temperature as a thousand points by laying a single strand of fiber optic. If there are a lot of measuring points in the distribution Measurement, the cost of each measuring point can be reduced the cost level of existing sensors and at the same time this has the advantage of connecting all sensors as one or two strands of fiber. Generally Optical Fiber is used for communication but Optical Fiber itself can be used for sensor and it has the characteristic of sensor function which can be measured Temperature in the at least each one meter distance. By using these characteristics each sensor and the number of Connection Lines can be reduced. In this paper, we implement a real time temperature monitoring system, which is easy to manage and control for data storage, data management, data storage using a computer and which has the functions of monitoring and correction according to Real-time temperature changes using historical temperature data.