• 제목/요약/키워드: Sensor storage

Search Result 400, Processing Time 0.025 seconds

A Study on the Control and Level Measurement for a Rainwater Tank (우수 저류조 수위측정 및 제어에 대한 연구)

  • Kim, Kee-Hwan
    • The Journal of the Convergence on Culture Technology
    • /
    • v.2 no.4
    • /
    • pp.55-59
    • /
    • 2016
  • In this paper, we propose a system for monitoring and controlling the level of the rainwater tank by installing an underground storage tank as one of ways to increase the utilization rate to solve the water shortage and imbalance. For this purpose, a microprocessor of ATMEL's Atmega 128 is used for the control module, and the sensor capable of measuring the water level uses a float type level sensor which is a kind of tactile sensor. In particular, the level sensor outputs the output in a industry standard dimension, so that the compatibility is improved so as to replace the existing sensor.

Efficient and Secure Routing Protocol forWireless Sensor Networks through SNR Based Dynamic Clustering Mechanisms

  • Ganesh, Subramanian;Amutha, Ramachandran
    • Journal of Communications and Networks
    • /
    • v.15 no.4
    • /
    • pp.422-429
    • /
    • 2013
  • Advances in wireless sensor network (WSN) technology have enabled small and low-cost sensors with the capability of sensing various types of physical and environmental conditions, data processing, and wireless communication. In the WSN, the sensor nodes have a limited transmission range and their processing and storage capabilities as well as their energy resources are limited. A triple umpiring system has already been proved for its better performance in WSNs. The clustering technique is effective in prolonging the lifetime of the WSN. In this study, we have modified the ad-hoc on demand distance vector routing by incorporating signal-to-noise ratio (SNR) based dynamic clustering. The proposed scheme, which is an efficient and secure routing protocol for wireless sensor networks through SNR-based dynamic clustering (ESRPSDC) mechanisms, can partition the nodes into clusters and select the cluster head (CH) among the nodes based on the energy, and non CH nodes join with a specific CH based on the SNR values. Error recovery has been implemented during the inter-cluster routing in order to avoid end-to-end error recovery. Security has been achieved by isolating the malicious nodes using sink-based routing pattern analysis. Extensive investigation studies using a global mobile simulator have shown that this hybrid ESRP significantly improves the energy efficiency and packet reception rate as compared with the SNR unaware routing algorithms such as the low energy aware adaptive clustering hierarchy and power efficient gathering in sensor information systems.

Economical Gas Chamber for In-situ Gas Measurement and Analysis of Gas Response Characteristics according to Sensor Voltage (인시투 가스 측정이 가능한 경제적 가스 챔버 구현 및 센서 전압에 따른 가스 응답 특성 분석)

  • Choi, Yun-Suk;Lee, In Hwan
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.18 no.5
    • /
    • pp.1-8
    • /
    • 2019
  • Breath analysis using a portable device is better than the classical breath analysis system in terms of installation and operation. There is an increasing need to develop cost-effective equipment for testing gas sensors from the viewpoint of functionalities that can be applied applicable to portable devices. In the present study, an economical gas chamber for in-situ gas measurement is implemented with a single gas chamber without using expensive gas storage and control equipment; the gas response characteristics are analyzed using the above-described chamber. The main features of the implemented gas chamber are simple injection procedure, improved gas diffusion, easy measurement and cleaning, support for low-power mode measurement function for portable devices, and open source platform. Moreover, an analysis of gas response characteristics based on changes in sensor voltage show that the sensitivity and 90% response time are affected by the sensor voltage. Furthermore, the sensitivity graph has an inflection point in a specific range. The gas sensor applied in this study showed fast response speed and high sensitivity for sensor voltages of 3.0-3.5 V, regardless of the concentration of acetone gas, the target gas used in this study.

Gas Tank Microleakage Reception Characteristics According to Thickness of the First Matching Layer of Ultrasonic Sensor (초음파 센서의 1차 정합층 두께에 따른 가스탱크 미세누설 수신특성)

  • Seo, Wonjun;Son, Seongjin;Im, Seokyeon
    • Tribology and Lubricants
    • /
    • v.37 no.5
    • /
    • pp.164-171
    • /
    • 2021
  • Ultrasonic sensors show various reception characteristics based on the density of the measurement medium; hence, they are used in various fields to benefit from the characteristics of ultrasonic signals. In this study, the reception characteristics according to the thickness of the first matching layer are compared and analyzed for application to gas tank microleak detection. Accordingly, three types of sensors are manufactured with varying thicknesses of the first matching layer, namely 4.8 mm, 5.1 mm, and 5.5 mm; further, a direct measurement method is used wherein the sensor is attached to the inside of the chamber. Experiments are conducted to observe the phase change due to microleakage, which is the most linear in the sensor with the 4.8 mm thick first matching layer. This is assumed to be the result of stable signal transmission and reception with little phase deviations over time because the first matching layer is closest to the ultrasonic wavelength. The other sensors show nonlinear results with increasing thickness of the first matching layer. Through this study, it is found that appropriately selecting the thickness of the first matching layer of the ultrasonic sensor can greatly influence sensor reliability.

Reproduction strategy of radiation data with compensation of data loss using a deep learning technique

  • Cho, Woosung;Kim, Hyeonmin;Kim, Duckhyun;Kim, SongHyun;Kwon, Inyong
    • Nuclear Engineering and Technology
    • /
    • v.53 no.7
    • /
    • pp.2229-2236
    • /
    • 2021
  • In nuclear-related facilities, such as nuclear power plants, research reactors, accelerators, and nuclear waste storage sites, radiation detection, and mapping are required to prevent radiation overexposure. Sensor network systems consisting of radiation sensor interfaces and wxireless communication units have become promising tools that can be used for data collection of radiation detection that can in turn be used to draw a radiation map. During data collection, malfunctions in some of the sensors can occasionally occur due to radiation effects, physical damage, network defects, sensor loss, or other reasons. This paper proposes a reproduction strategy for radiation maps using a U-net model to compensate for the loss of radiation detection data. To perform machine learning and verification, 1,561 simulations and 417 measured data of a sensor network were performed. The reproduction results show an accuracy of over 90%. The proposed strategy can offer an effective method that can be used to resolve the data loss problem for conventional sensor network systems and will specifically contribute to making initial responses with preserved data and without the high cost of radiation leak accidents at nuclear facilities.

Security and Privacy Mechanism using TCG/TPM to various WSN (다양한 무선네트워크 하에서 TCG/TPM을 이용한 정보보호 및 프라이버시 매커니즘)

  • Lee, Ki-Man;Cho, Nae-Hyun;Kwon, Hwan-Woo;Seo, Chang-Ho
    • Journal of the Korea Society of Computer and Information
    • /
    • v.13 no.5
    • /
    • pp.195-202
    • /
    • 2008
  • In this paper, To improve the effectiveness of security enforcement, the first contribution in this work is that we present a clustered heterogeneous WSN(Wareless Sensor Network) architecture, composed of not only resource constrained sensor nodes, but also a number of more powerful high-end devices acting as cluster heads. Compared to sensor nodes, a high-end cluster head has higher computation capability, larger storage, longer power supply, and longer radio transmission range, and it thus does not suffer from the resource scarceness problem as much as a sensor node does. A distinct feature of our heterogeneous architecture is that cluster heads are equipped with TC(trusted computing) technology, and in particular a TCG(Trusted Computing Group) compliant TPM (Trusted Platform Module) is embedded into each cluster head. According the TCG specifications, TPM is a tamper-resistant, self-contained secure coprocessor, capable of performing cryptographic functions. A TPM attached to a host establishes a trusted computing platform that provides sealed storage, and measures and reports the integrity state of the platform.

  • PDF

USN Channel Establishment Algorithm for Sensor Authentication and Anti-collision (센서 인증과 충돌 방지를 위한 USN 채널 확립 알고리즘)

  • Rhee, Kang-Hyeon
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.44 no.3
    • /
    • pp.74-80
    • /
    • 2007
  • Advances in electronic and computer technologies have paved the way for the proliferation of WSN(wireless sensor networks). Accordingly, necessity of anti-collusion and authentication technology is increasing on the sensor network system. Some of the algorithm developed for the anti-collision sensor network can be easily adopted to wireless sensor network platforms and in the same time they can meet the requirements for sensor networks like: simple parallel distributed computation, distributed storage, data robustness and auto-classification of sensor readings. To achieve security in wireless sensor networks, it is important to be able to establish safely channel among sensor nodes. In this paper, we proposed the USN(Ubiquitous Sensor Network) channel establishment algorithm for sensor's authentication and anti-collision. Two different data aggregation architectures will be presented, with algorithms which use wavelet filter to establish channels among sensor nodes and BIBD (Balanced Incomplete Block Design) which use anti-collision methods of the sensors. As a result, the proposed algorithm based on BIBD and wavelet filter was made for 98% collision detection rate on the ideal environment.

Intelligent Sensor Technology Trend for Smart IT Convergence Platform (스마트 IT 융합 플랫폼을 위한 지능형 센서 기술 동향)

  • Kim, H.J.;Jin, H.B.;Youm, W.S.;Kim, Y.G.;Park, K.H.
    • Electronics and Telecommunications Trends
    • /
    • v.34 no.5
    • /
    • pp.14-25
    • /
    • 2019
  • As the Internet of Things, artificial intelligence and big data have received a lot of attention as key growth engines in the era of the fourth industrial revolution, data acquisition and utilization in mobile, automotive, robotics, manufacturing, agriculture, health care and national defense are becoming more important. Due to numerous data-based industrial changes, demand for sensor technologies is exploding, especially for intelligent sensor technologies that combine control, judgement, storage and communication functions with the sensors's own functions. Intelligent sensor technology can be defined as a convergence component technology that combines intelligent sensor units, intelligent algorithms, modules with signal processing circuits, and integrated plaform technologies. Intelligent sensor technology, which can be applied to variety of smart IT convergence services such as smart devices, smart homes, smart cars, smart factory, smart cities, and others, is evolving towards intelligent and convergence technologies that produce new high-value information through recognition, reasoning, and judgement based on artificial intelligence. As a result, development of intelligent sensor units is accelerating with strategies for miniaturization, low-power consumption and convergence, new form factor such as flexible and stretchable form, and integration of high-resolution sensor arrays. In the future, these intelligent sensor technologies will lead explosive sensor industries in the era of data-based artificial intelligence and will greatly contribute to enhancing nation's competitiveness in the global sensor market. In this report, we analyze and summarize the recent trends in intelligent sensor technologies, especially those for four core technologies.

A key management scheme for the cluster-based sensor network using polar coordinated (극 좌표를 이용한 클러스터 기반 센서 네트워크의 키 관리 기법)

  • Hong, Seong-Sik;Ryou, Hwang-Bin
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.12 no.5
    • /
    • pp.870-878
    • /
    • 2008
  • The level of security of most sensor nodes that comprise the sensor networks is low, but because of the low computing power and small storage capacity, it is even very difficult to apply a security algorithm efficiently to the sensor nodes. Therefore, preventing the join of an illegal node to a sensor network is impossible, and the transmitting information is easily exposed and overheard when the transmitting algorithm of the sensor node is hewn. In this paper, we propose a group key management scheme for the sensor network using polar coordinates, so that the sensor nodes can deliver information securely inside a cluster and any illegal node is prevented from joining to the cluster where a sensor network is composed of many clusters. In the proposed scheme, all of the sensor nodes in a cluster set up the authentication keys based on the pivot value provided by the CH. The intensive simulations show that the proposed scheme outperforms the pair-wise scheme in terms of the secure key management and the prevention of the illegal nodes joining to the network.

Applicability of Satellite SAR Imagery for Estimating Reservoir Storage (저수지 저수량 추정을 위한 위성 SAR 자료의 활용성)

  • Jang, Min-Won;Lee, Hyeon-Jeong;Kim, Yi-Hyun;Hong, Suk-Young
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.53 no.6
    • /
    • pp.7-16
    • /
    • 2011
  • This study discussed the applicability of satellite SAR (Synthetic Aperture Radar) imagery with regard to reservoir monitoring, and tried the extraction of reservoir storage from multi-temporal C-band RADARSAT-1 SAR backscattering images of Yedang and Goongpyeong agricultural reservoirs, acquired from May to October 2005. SAR technology has been advanced as a complementary and alternative approach to optical remote sensing and in-situ measurement. Water bodies in SAR imagery represent low brightness induced by low backscattering, and reservoir storage can be derived from the backscatter contrast with the level-area-volume relationship of each reservoir. The threshold segmentation over the routine preprocessing of SAR images such as speckle reduction and low-pass filtering concluded a significant correlation between the SAR-derived reservoir storage and the observation record in spite of the considerable disagreement. The result showed up critical limitations for adopting SAR data to reservoir monitoring as follows: the inappropriate specifications of SAR data, the unreliable rating curve of reservoir, the lack of climatic information such as wind and precipitation, the interruption of inside and neighboring land cover, and so on. Furthermore, better accuracy of SAR-based reservoir monitoring could be expected through different alternatives such as multi-sensor image fusion, water level measurement with altimeters or interferometry, etc.