• Title/Summary/Keyword: Sensor orientation

Search Result 328, Processing Time 0.033 seconds

Fabrication of MgO(100)/$Si_3N_4/SiO_2/Si_3N_4$/Si Substrate for Pyroelectric IR Sensor (초전형 적외선 센서를 위한 MgO(100)/$Si_3N_4/SiO_2/Si_3N_4$/Si 기판 제작)

  • Kim, Sung-Woo;Sung, Se-Kyoung;Ryu, Jee-Youl;Choi, Woo-Chang;Choi, Hyek-Hwan;Lee, Myoung-Kyo;Kwon, Tae-Ha
    • Journal of Sensor Science and Technology
    • /
    • v.9 no.2
    • /
    • pp.90-95
    • /
    • 2000
  • The substrate for pyroelectric IR sensor which has orientation similar to MgO single crystal was fabricated by depositing the MgO thin film on $Si_3N_4/SiO_2/Si_3N_4$/Si. The MgO thin film was deposited by RF magnetron sputtering. The c-axis orientation of PLT thin film deposited on Pt/MgO(100)/$Si_3N_4/SiO_2/Si_3N_4$/Si substrate was investigated. The MgO thin film deposited at $500^{\circ}C$ at a gas pressure of 30 mTorr with RF power of 160 W exhibited a good a-axis orientation. The PLT thin films deposited on these substrates also exhibited c-axis orientation similar to the PLT thin films deposited on MgO single crystal substrate.

  • PDF

The Mechanical Properties Evaluation on Lay-up Orientation Effect of CFRP Laminate Composite with the Hole Notch (원공노치를 가진 CFRP의 적층방향에 따른 기계적 특성 평가)

  • Tae, Young-Il;Yun, Yu-Seong;Kwon, Oh-Heon
    • Journal of the Korean Society of Safety
    • /
    • v.17 no.1
    • /
    • pp.25-32
    • /
    • 2002
  • The tensile tests for [0/90]s, [90/0]s, and $[0/{\pm}45/90]s$ laminate composite were accomplished with acoustic sensor and failure processes were recorded by a video camera in real time. Also SEM examinations for fracture and side surface were carried out. The purpose of study is estimation of the failure mechanism and the mechanical properties effected by lay-up orientation for CFRP laminate composite with the hole notch. From the results, mechanical properties were obtained and they are similar between two kinds of cross-ply orientation in CFRP laminate composites, but not on $[0/{\pm}45/90]s$. And accordings to increasing the load, accumulate AE count was increased, regardless of lay-up orientation. Futhermore, failure mechanism was described by a video monitoring and SEM.

A neural network method for recognition of part orientation in a bowl feeder (보울 피이더에서 신경 회로망을 이용한 부품 자세 인식에 관한 연구)

  • 임태균;김종형;조형석;김성권
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1990.10a
    • /
    • pp.275-280
    • /
    • 1990
  • A neural network method is applied for recognizing the orientation o f individual parts being fed from a bowl feeder. The system is designed in such a way that a part can be discriminated and sorting according to every possible stable orientation without implementing any a mechanical tooling. The operation of the bowl feeder is based on a 2D image obtained from an array of fiber optic sensor located on the feeder track. The acquired binary image of a moving and vibrating part is used as input to a neural network which, in turn, determines t he orientation of the part. The main task of the neural network, here is to synthesize the appropriate internal discriminant functions for the part orientation using the part features. A series of the experiments reveals several promising points on performance. Since the operation of the feeder is highly programmable, it is well suited for feeding and sorting small parts prior to small batch assembly work.

  • PDF

An Efficient Localization Algorithm for Mobile Robots in RFID Sensor Space (모바일 로봇을 위한 RFID 센서공간에서 효율적인 위치인식 알고리즘)

  • Lim, Hyung-Soo;Choi, Sung-Yug;Lee, Jang-Myung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.10
    • /
    • pp.949-955
    • /
    • 2007
  • This paper proposes an efficient localization algorithm in the RFID sensor space for the precise localization of a mobile robot. The RFID sensor space consists of embedded sensors and a mobile robot. The embedded sensors, that is tags are holding the absolute position data and provide them to the robot which carries a reader and requests the absolute position fur localization. The reader, it is called as antenna usually, gets several tag data at the same time within its readable range. It takes time to read all the tags and to process the data to estimate the position, which is a major factor to deteriorate the localization accuracy. In this paper, an efficient algorithm to estimate the position and orientation of the mobile robot as quickly as possible has been proposed. Along with the algorithm, a new allocation of the tags in the RFID sensor space is also proposed to improve the localization accuracy. The proposed algorithms are demonstrated and verified through the real experiments.

Measurement of Pressure Coefficient in Rotating Discharge Hole by Telemetric Method (무선계측기법을 이용한 회전 송출공의 압력계수 측정)

  • Ku, Nam-Hee;Kauh, Sang-Ken;Ha, Kyoung-Pyo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.9
    • /
    • pp.1248-1255
    • /
    • 2003
  • Pressure coefficient in a rotating discharge hole was measured to gain insight into the influence of rotation on the discharge characteristics of rotating discharge holes. Pressures inside the hole were measured by a telemetry system that had been developed by the authors. The telemetry system is characterized by the diversity of applicable sensor type. In the present study, the telemetry system was modified to measure static pressure using piezoresistive pressure sensors. The pressure sensor is affected by centrifugal force and change of orientation relative to the gravity. The orientation of sensor installation for minimum rotating effect and zero gravity effect was found out from the test. Pressure coefficients in a rotating discharge hole were measured in longitudinal direction as well as circumferential direction at various rotating speeds and three different pressure ratios. From the results, the behaviors of pressure coefficient that cannot be observed by a non-rotating setup were presented. It was also shown that the discharge characteristics of rotating discharge hole is much more influenced by the Rotation number irrespective of pressure ratio.

Pose Tracking of Moving Sensor using Monocular Camera and IMU Sensor

  • Jung, Sukwoo;Park, Seho;Lee, KyungTaek
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.8
    • /
    • pp.3011-3024
    • /
    • 2021
  • Pose estimation of the sensor is important issue in many applications such as robotics, navigation, tracking, and Augmented Reality. This paper proposes visual-inertial integration system appropriate for dynamically moving condition of the sensor. The orientation estimated from Inertial Measurement Unit (IMU) sensor is used to calculate the essential matrix based on the intrinsic parameters of the camera. Using the epipolar geometry, the outliers of the feature point matching are eliminated in the image sequences. The pose of the sensor can be obtained from the feature point matching. The use of IMU sensor can help initially eliminate erroneous point matches in the image of dynamic scene. After the outliers are removed from the feature points, these selected feature points matching relations are used to calculate the precise fundamental matrix. Finally, with the feature point matching relation, the pose of the sensor is estimated. The proposed procedure was implemented and tested, comparing with the existing methods. Experimental results have shown the effectiveness of the technique proposed in this paper.

A Work-related Musculoskeletal Disorder Risk Assessment Platform using Smart Sensor (스마트센서를 활용한 근골격계 질환 위험 평가 플랫폼)

  • Loh, Byoung Gook
    • Journal of the Korean Society of Safety
    • /
    • v.30 no.3
    • /
    • pp.93-99
    • /
    • 2015
  • Economic burden of work-related musculoskeletal disorder(WMDs) is increasing. Known causes of WMDs include improper posture, repetition, load, and temperature of workplace. Among them, improper postures play an important role. A smart sensor called SensorTag is employed to estimate the trunk postures including flexion-extension, lateral bend, and the trunk rotational speeds. Measuring gravitational acceleration vector in the smart sensor along the tri-orthogonal axes offers an orientation of the object with the smart sensor attached to. The smart sensor is light in weight and has small form factor, making it an ideal wearable sensor for body posture measurement. Measured data from the smart senor is wirelessly transferred for analysis to a smartphone which has enough computing power, data storage and internet-connectivity, removing need for additional hardware for data post-processing. Based on the estimated body postures, WMDs risks can be conviently gauged by using existing WMDs risk assesment methods such as OWAS, RULA, REBA, etc.

Comparison between Two Coordinate Transformation-Based Orientation Alignment Methods (좌표변환 기반의 두 자세 정렬 기법 비교)

  • Lee, Jung-Keun;Jung, Woo-Chang
    • Journal of Sensor Science and Technology
    • /
    • v.28 no.1
    • /
    • pp.30-35
    • /
    • 2019
  • Inertial measurement units (IMUs) are widely used for wearable motion-capturing systems in the fields of biomechanics and robotics. When the IMUs are combined with optical motion sensors (hereafter, OPTs) for their complementary capabilities, it is necessary to align the coordinate system orientations between the IMU and OPT. In this study, we compare the application of two coordinate transformation-based orientation alignment methods between two coordinate systems. The first method (M1) applies angular velocity coordinate transformation, while the other method (M2) applies gyroscopic angle coordinate transformation. In M1 and M2, the angular velocities and angles, respectively, are acquired during random movement for a least-square algorithm to determine the alignment matrix between the two coordinate systems. The performance of each method is evaluated under various conditions according to the type of motion during measurement, number of data points, amount of noise, and the alignment matrix. The results show that M1 is free from drift errors, while drift errors are present in most cases where M2 is applied. Thus, this study indicates that M1 has a far superior performance than M2 for the alignment of IMU and OPT coordinate systems for motion analysis.

Correction Method for Orientation of Cylindrical Moving Part in Micro-Positioning Device (정밀 위치 결정 기구에서 원통형 구동부의 자세 보정)

  • Jo, Nam-Gyu;Kim, Do-Hyeon;Gwon, Gi-Hwan
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.11
    • /
    • pp.42-50
    • /
    • 2001
  • In this paper, a new technique and theory are proposed which correct the orientation (inclination of a vertical axis) of a cylinder in vertical-micro positioning device. An algorithm for determining the orientation of the cylinder with a pair of displacement sensor units is derived and two types of the correction methods are described. To assess the performance and efficiency of the developed correction technique, the compensation errors originated from the correction algorithm and the machined characteristics of cylinder surface are evaluated from the geometrical considerations and the statistical techniques. Based upon the evaluation results, the maximum compensation error is estimated for the orientation of cylinder and the optimum correction technique is derived.

  • PDF

A Sequential Orientation Kalman Filter for AHRS Limiting Effects of Magnetic Disturbance to Heading Estimation

  • Lee, Jung Keun;Choi, Mi Jin
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.4
    • /
    • pp.1675-1682
    • /
    • 2017
  • This paper deals with three dimensional orientation estimation algorithm for an attitude and heading reference system (AHRS) based on nine-axis inertial/magnetic sensor signals. In terms of the orientation estimation based on the use of a Kalman filter (KF), the quaternion is arguably the most popular orientation representation. However, one critical drawback in the quaternion representation is that undesirable magnetic disturbances affect not only yaw estimation but also roll and pitch estimations. In this paper, a sequential direction cosine matrix-based orientation KF for AHRS has been presented. The proposed algorithm uses two linear KFs, consisting of an attitude KF followed by a heading KF. In the latter, the direction of the local magnetic field vector is projected onto the heading axis of the inertial frame by considering the dip angle, which can be determined after the attitude KF. Owing to the sequential KF structure, the effects of even extreme magnetic disturbances are limited to the roll and pitch estimations, without any additional decoupling process. This overcomes an inherent issue in quaternion-based estimation algorithms. Validation test results show that the proposed method outperforms other comparison methods in terms of the yaw estimation accuracy during perturbations and in terms of the recovery speed.