• Title/Summary/Keyword: Sensor interface circuit

Search Result 93, Processing Time 0.029 seconds

A Method on the Temperature Compensation for the Oxygen Electrode for DO Sensor (DO 센서용 산소전극의 온도보상에 대한 일 방안)

  • Rhie, Dong-Hee;Choi, Bok-Gil
    • Proceedings of the KIEE Conference
    • /
    • 1995.11a
    • /
    • pp.376-378
    • /
    • 1995
  • A method is presented for the design and fabrication of the temperature compensation circuits on the Clark electrodes for measuring the dissolved oxygen(DO) concentration. The discussion includes a method of the sensor interface circuits for the DO sensor. Typical polarograms for the DO probes under test using this sensor circuits are presented. High accuracy over 99 % of the I to V conversion using the proposed circuit is verified. Temperature dependence for the test DO probe is well compensated automatically using the thermistor($2k\Omega,\;25^{\circ}C$) in series with correction resistor in the feedback loop of the op-amp circuit in the temperature range of the 0-50$^{\circ}C$.

  • PDF

CMOS Circuits for Multi-Sensor Interface Custom IC (멀티센서신호 인터페이스용 Custom IC를 위한 CMOS 회로 설계)

  • Jo, Young-Chang;Choi, Pyung;Sohn, Byung-Ki
    • Journal of Sensor Science and Technology
    • /
    • v.3 no.1
    • /
    • pp.54-60
    • /
    • 1994
  • In this paper, the multi-sensor signal processing IC is designed. It consists of an analog multiplexer for selection of multi-sensor signals, active filters for noise rejection and signal amplification, and a sample and hold circuit for interface with digital signal processing. By implementing these circuits with CMOS transistors, integration, low power dissipation and miniaturization of the total signal processing system have been made possible.

  • PDF

A Development of Measurement System for Diathesis-Diagnosis (체질 진단을 위한 센서 시스템의 개발)

  • Jung, Yong-Rae;Kim, Seong-Woo
    • Proceedings of the KIEE Conference
    • /
    • 2001.11c
    • /
    • pp.260-263
    • /
    • 2001
  • This paper is to develop the sensing system for opening-force measurement such as O-Ring muscular meridian. We designed to overcome the functional limit that the conventional force-sensor can measure just the closing-force. Therefore, the new sensor can meet a variety of application as well as O-Ring test. The structure of the new sensor is an actuator-type system using an electromagnet. That is made up of mechanical system, electromagnet, current transformer and computer interface circuit. Driving software and user interface program of the new sensor system also is explained in this paper.

  • PDF

Wearable User Interface based on EOG and Marker Recognition (EOG와 마커인식을 이용한 착용형 사용자 인터페이스)

  • Kang, Sun-Kyoung;Jung, Sung-Tae;Lee, Sang-Seol
    • Journal of the Korea Society of Computer and Information
    • /
    • v.11 no.6 s.44
    • /
    • pp.133-141
    • /
    • 2006
  • Recently many wearable computers have been developed. But they still have many user interface problems from both an input and output perspective. This paper presents a wearable user interface based on EOG(electrooculogram) sensing circuit and marker recognition. In the proposed user interface, the EOG sensor circuit which tracks the movement of eyes by sensing the potential difference across the eye is used as a pointing device. Objects to manipulate are represented human readable markers. And the marker recognition system detects and recognize markers from the camera input image. When a marker is recognized, the corresponding property window and method window are displayed to the head mounted display. Users manipulate the object by selecting a property or a method item from the window. By using the EOG sensor circuit and the marker recognition system, we can manipulate an object with only eye movement in the wearable computing environment.

  • PDF

Remote Measurement for Automobile′s ECU Sensor Signals Using RF modules (RF모듈을 이용한 자동차 ECU 센서신호의 원격계측)

  • 이성철;서지원;권대규;방두열
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.1067-1070
    • /
    • 2003
  • In this paper, we present a remote measurement system for the wireless monitoring of ECU Sensor Signals of vehicle. In order to measure the ECU sensor signals, the interface circuit is designed to communicate ECU and designed terminal wirelessly according to the ISO, SAE regulation of communication protocol standard. A micro-controller 80C196KC is used for communicating ECU sensor signals. ECU sensor signals are transmitted to the RF-wireless terminal that was developed using the micro controller 80386EX. LCD, and RF-module. 80386EX software is programmed to monitor the ECU sensor signals using the Borland C++ compiler in which the half duplex method was used for the RS232 communication. The algorithms for measuring the ECU sensor signals are verified to monitor ECU state. At the same time, the information to fix the vehicle's problem can be shown on the developed monitoring software. The possibility for remote measurement of ECU sensor signals using 80386EX is also verified through the developed systems and algorithms.

  • PDF

A CMOS Switched-Capacitor Interface Circuit for MEMS Capacitive Sensors (MEMS 용량형 센서를 위한 CMOS 스위치드-커패시터 인터페이스 회로)

  • Ju, Min-sik;Jeong, Baek-ryong;Choi, Se-young;Yang, Min-Jae;Yoon, Eun-jung;Yu, Chong-gun
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2014.10a
    • /
    • pp.569-572
    • /
    • 2014
  • This paper presents a CMOS switched-capacitor interface circuit for MEMS capacitive sensors. It consist of a capacitance to voltage converter(CVC), a second-order ${\Sigma}{\Delta}$ modulator, and a comparator. A bias circuit is also designed to supply constant bias voltages and currents. This circuit employes the correlated-double-sampling(CDS) and chopper-stabilization(CHS) techniques to reduce low-frequency noise and offset. The designed CVC has a sensitivity of 20.53mV/fF and linearity errors less than 0.036%. The duty cycle of the designed ${\Sigma}{\Delta}$ modulator output increases about 5% as the input voltage amplitude increases by 100mV. The designed interface circuit shows linearity errors less than 0.13%, and the current consumption is 0.73mA. The proposed circuit is designed in a 0.35um CMOS process with a supply voltage of 3.3V. The size of the designed chip including PADs is $1117um{\times}983um$.

  • PDF

Design of Cold-junction Compensation and Disconnection Detection Circuits of Various Thermocouples(TC) and Implementation of Multi-channel Interfaces using Them (다양한 열전쌍(TC)의 냉점보상과 단선감지 회로설계 및 이를 이용한 다채널 인터페이스 구현)

  • Hyeong-Woo Cha
    • Journal of IKEEE
    • /
    • v.27 no.1
    • /
    • pp.45-52
    • /
    • 2023
  • Cold-junction correction(CJC) and disconnection detection circuit design of various thermocouples(TC) and multi-channel TC interface circuit using them were designed. The CJC and disconnection detection circuit consists of a CJC semiconductor device, an instrumentation amplifier(IA), two resistors and a diode for disconnection detection. Based on the basic circuit, a multi-channel interface circuit was also implemented. The CJC was implemented using compensation semiconductor and IA, and disconnection detection was detected by using two resistor and a diode so that IA input voltage became -0.42V. As a result of the experiment using R-type TC, the error of the designed circuit was reduced from 0.14mV to 3㎶ after CJC in the temperature range of 0℃ to 1400℃. In addition, it was confirmed that the output voltage of IA was saturated from 88mV to -14.2V when TC was disconnected from normal. The output voltage of the designed circuit was 0V to 10V in the temperature range of 0℃ to 1400℃. The results of the 4-channel interface experiment using R-type TC were almost identical to the CJC and disconnection detection results for each channel. The implemented multi-channel interface has a feature that can be applied equally to E, J, K, T, R, and S-type TCs by changing the terminals of CJC semiconductor devices and adjusting the IA gain.

CMOS Interface Circuit for MEMS Acceleration Sensor (MEMS 가속도센서를 위한 CMOS 인터페이스 회로)

  • Jeong, Jae-hwan;Kim, Ji-yong;Jang, Jeong-eun;Shin, Hee-chan;Yu, Chong-gun
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2012.10a
    • /
    • pp.221-224
    • /
    • 2012
  • This paper presents a CMOS interface circuit for MEMS acceleration sensor. It consists of a capacitance to voltage converter(CVC), a second-order switched-capacitor (SC) integrator and comparator. A bandgap reference(BGR) has been designed to supply a stable bias to the circuit and a ${\Sigma}{\Delta}$ Modulator with chopper - stabilization(CHS) has also been designed for more suppression of the low frequency noise and offset. As a result, the output of this ${\Sigma}{\Delta}$ Modulator increases about 10% duty cycle when the input voltage amplitude increases 100mV and the sensitivity is x, y-axis 0.45v/g, z-axis 0.28V/g. This work is designed and implemented in a 0.35um CMOS technology with a supply voltage of 3.3V and a sampling frequency of 3MHz sampling frequency. The size of the designed chip including PADs is $0.96mm{\times}0.85mm$.

  • PDF

Development of Standing and Moving Human Body Sensing Module Using a Chopper of Shutter Method (셔터방식의 쵸퍼를 이용한 정지 및 이동인체 감지 모듈 개발)

  • Cha, Hyeong-Woo;Lee, Won-Ho
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.53 no.2
    • /
    • pp.109-116
    • /
    • 2016
  • Sensing module of standing and moving human body using shutter method was developed. The module consists of Fresnel lens, pyroelectric infrared (PIR) sensor, interface circuit of the PIR, micro control unit(MCU), and alarm light emitting diode(LED). The principle for standing human body is chopping the thermal of human body using camera shutter. The human sensing signal in MCU by algorithm of interrupt function is detected. By unifying an apparatus and print circuit board(PCB), the developed module can be replaced as commercial moving human body detector. Experiment results show that sensing distance is about 7.0m and sensing angles is about $110^{\circ}$ at room temperature. In these condition, sending ratio was 100% and the power dissipation of the module was 100mW.

Education Equipment for FPGA Design of Sensor-based IOT System (센서 기반의 IOT 시스템의 FPGA 설계 교육용 장비)

  • Cho, Byung-woo;Kim, Nam-young;Yu, Yun-seop
    • Journal of Practical Engineering Education
    • /
    • v.8 no.2
    • /
    • pp.111-120
    • /
    • 2016
  • Education equipment for field programmable gate array (FPGA) design of sensor-based IOT (Internet Of Thing) system is introduced. Because sensors have different interfaces, several types of interface controller on FPGA need. Using this equipment, several types of interface controller, which can control ADC (analog-to-digital converter) for analog sensor outputs and $I^2C$ (Inter-Integrated Circuit), SPI (Serial Peripheral Interface Bus), and GPIO (General-Purpose Input/Output) for digital sensor outputs, can be designed on FPGA. Image processing hardware using image sensors and display controller for real and image-processed images or videos can be design on FPGA chip. This equipment can design a SOC (System On Chip) consisting of a hard process core on Linux OS and a FPGA block for IOT system which can communicate with wire and wireless networks. Using the education equipment, an example of hardware design using image sensor and accelerometer is described, and an example of syllabus for "Digital system design using FPGA" course is introduced. Using the education equipment, students can develop the ability to design some hardware, and to train the ability for the creative capstone design through conceptual, partial-level, and detail designs.