• 제목/요약/키워드: Sensor fusion

검색결과 815건 처리시간 0.031초

Fielding a Structural Health Monitoring System on Legacy Military Aircraft: a Business Perspective

  • Bos, Marcel J.
    • 비파괴검사학회지
    • /
    • 제35권6호
    • /
    • pp.421-428
    • /
    • 2015
  • An important trend in the sustainment of military aircraft is the transition from preventative maintenance to condition based maintenance (CBM). For CBM, it is essential that the actual system condition can be measured and the measured condition can be reliably extrapolated to a convenient moment in the future in order to facilitate the planning process while maintaining flight safety. Much research effort is currently being made for the development of technologies that enable CBM, including structural health monitoring (SHM) systems. Great progress has already been made in sensors, sensor networks, data acquisition, models and algorithms, data fusion/mining techniques, etc. However, the transition of these technologies into service is very slow. This is because business cases are difficult to define and the certification of the SHM systems is very challenging. This paper describes a possibility for fielding a SHM system on legacy military aircraft with a minimum amount of certification issues and with a good prospect of a positive return on investment. For appropriate areas in the airframe the application of SHM will reconcile the fail-safety and slow crack growth damage tolerance approaches that can be used for safeguarding the continuing airworthiness of these areas, combining the benefits of both approaches and eliminating the drawbacks.

인간친화적인 안내 로봇 연구 (A Study on Human-Friendly Guide Robot)

  • 최우경;김성주;하상형;전홍태
    • 전자공학회논문지SC
    • /
    • 제43권6호
    • /
    • pp.9-15
    • /
    • 2006
  • 최근 로봇 개발의 현황을 살펴보면 인간과 로봇이 공존하면서 인간이 로봇으로부터 서비스를 받을 수 있는 로봇의 개발이 지속적으로 증가하는 추세다. 그 중에서도 특히 관심을 끌고 있는 것은 복지 로봇에 관한 연구이다. 현재 가장 일반화되어 있는 복지 로봇은 시각 장애인의 주행을 도와주는 안내 로봇이며 장애물을 인식하여 안전한 경로를 제공하는 것을 목적으로 한다. 본 논문에서는 장애물 충돌회피의 기능뿐만 다양한 센서를 장착하여 환경 정보를 파악하여 사용자에게 가장 안전한 이동방향과 이동 속도를 제시한다. 또한 지도 정보를 이용하여 사용자에게 가장 친숙하고 안전한 주행 경로를 선택하는 안내 로봇을 제시한다.

미세 볼엔드밀가공시 절삭력과 음향방출신호에 의한 공구 파손 검출 및 메커니즘 (The Mechanism and Detection of Tool Fracture using Sensor Fusion in Cutting Force and AE Signals for Small Diameter Ball-end Milling)

  • 왕덕현;김원일;임정숙
    • 한국기계가공학회지
    • /
    • 제3권3호
    • /
    • pp.24-31
    • /
    • 2004
  • A successful on-line monitoring system for conventional machining operations has the potential to reduce cost, guarantee consistency of product quality, improve productivity and provide a safer environment for the operator. In fine-shape machining, typical signs of tool problems such as vibration, noise, chip flow characteristics and visual signs are almost unnoticeable without the use of special equipment. These characteristics increase the importance of automatic monitoring in fine-shape machining, however, sensing and interpretation of signals ar more complex. In addition, the shafts of the mini-tools break before the typical extensive cutting edge of the tool gets damaged. In this study, the existence of a relationship between the characteristics of the cutting force and tool usage was investigated, and tool breakage detection algorithm by LabVIEW was developed and the following results are obtained. It was possible to use a relative error compare which mainly used in established experiment and investigated tool breakage detection algorithm in time domain which can detect AE and cutting force signals more effective and accurate.

  • PDF

스트랩다운 탐색기 및 INS 정보를 이용한 비동기 유도필터 설계 (Asynchronous Guidance Filter Design Based on Strapdown Seeker and INS Information)

  • 박장성;김윤영;박상혁;김윤환
    • 한국항공우주학회지
    • /
    • 제48권11호
    • /
    • pp.873-880
    • /
    • 2020
  • 본 논문은 스트랩다운 탐색기 측정치와 INS 정보를 이용하여 시선각속도를 추정하는 유도필터 설계에 대해서 다룬다. 제안하는 유도필터는 탐색기 측정치와 유도탄 자세로부터 획득 가능한 시선각과 표적의 위치와 유도탄과의 상대 위치를 측정치로 하고 있으며, 주기 및 동기가 맞지 않는 두 센서의 출력을 사용하기 위해 비동기 필터를 기반으로 하고 있다. 제안한 방법을 통해 시간지연이 큰 탐색기 측정치를 사용함으로써 생길 수 있는 기생루프에 대한 영향을 줄이고 추정성능을 향상시킬 수 있다.

Generation of Simulated Geospatial Images from Global Elevation Model and SPOT Ortho-Image

  • Park, Wan Yong;Eo, Yang Dam
    • 한국측량학회지
    • /
    • 제32권3호
    • /
    • pp.217-223
    • /
    • 2014
  • With precise sensor position, attitude element, and imaging resolution, a simulated geospatial image can be generated. In this study, a satellite image is simulated using SPOT ortho-image and global elevation data, and the geometric similarity between original and simulated images is analyzed. Using a SPOT panchromatic image and high-density elevation data from a 1/5K digital topographic map data an ortho-image with 10-meter resolution was produced. The simulated image was then generated by exterior orientation parameters and global elevation data (SRTM1, GDEM2). Experimental results showed that (1) the agreement of the image simulation between pixel location from the SRTM1/GDEM2 and high-resolution elevation data is above 99% within one pixel; (2) SRTM1 is closer than GDEM2 to high-resolution elevation data; (3) the location of error occurrence is caused by the elevation difference of topographical objects between high-density elevation data generated from the Digital Terrain Model (DTM) and Digital Surface Model (DSM)-based global elevation data. Error occurrences were typically found at river boundaries, in urban areas, and in forests. In conclusion, this study showed that global elevation data are of practical use in generating simulated images with 10-meter resolution.

정풍량 공조시스템의 고장검출 및 진단 시뮬레이션 (Fault Detection and Diagnosis Simulation for CAV AHU System)

  • 한동원;장영수;김서영;김용찬
    • 설비공학논문집
    • /
    • 제22권10호
    • /
    • pp.687-696
    • /
    • 2010
  • In this study, FDD algorithm was developed using the normalized distance method and general pattern classifier method that can be applied to constant air volume air handling unit(CAV AHU) system. The simulation model using TRNSYS and EES was developed in order to obtain characteristic data of CAV AHU system under the normal and the faulty operation. Sensitivity analysis of fault detection was carried out with respect to fault progress. When differential pressure of mixed air filter increased by more than about 105 pascal, FDD algorithm was able to detect the fault. The return air temperature is very important measurement parameter controlling cooling capacity. Therefore, it is important to detect measurement error of the return air temperature. Measurement error of the return air temperature sensor can be detected at below $1.2^{\circ}C$ by FDD algorithm. FDD algorithm developed in this study was found to indicate each failure modes accurately.

정밀 지도에 기반한 자율 주행 시스템 개발 (A Development of the Autonomous Driving System based on a Precise Digital Map)

  • 김병광;이철하;권수림;정창영;천창환;박민우;나용천
    • 자동차안전학회지
    • /
    • 제9권2호
    • /
    • pp.6-12
    • /
    • 2017
  • An autonomous driving system based on a precise digital map is developed. The system is implemented to the Hyundai's Tucsan fuel cell car, which has a camera, smart cruise control (SCC) and Blind spot detection (BSD) radars, 4-Layer LiDARs, and a standard GPS module. The precise digital map has various information such as lanes, speed bumps, crosswalks and land marks, etc. They can be distinguished as lane-level. The system fuses sensed data around the vehicle for localization and estimates the vehicle's location in the precise map. Objects around the vehicle are detected by the sensor fusion system. Collision threat assessment is performed by detecting dangerous vehicles on the precise map. When an obstacle is on the driving path, the system estimates time to collision and slow down the speed. The vehicle has driven autonomously in the Hyundai-Kia Namyang Research Center.

최소 분류 오차 기법과 멀티 모달 시스템을 이용한 감정 인식 알고리즘 (Emotion Recognition Algorithm Based on Minimum Classification Error incorporating Multi-modal System)

  • 이계환;장준혁
    • 대한전자공학회논문지SP
    • /
    • 제46권4호
    • /
    • pp.76-81
    • /
    • 2009
  • 본 논문에서는 최소 분류 오차 기법 (Minimum Classification Error, MCE)에 기반한 감정 인식을 위한 알고리즘 멀티 모달(Multi-modal) 시스템을 기반으로 제안한다. 사람의 음성 신호로부터 추출한 특징벡터와 장착한 바디센서로부터 구한 피부의 전기반응도 (Galvanic Skin Response, GSR)를 기반으로 특징벡터를 구성하여 이를 Gaussian Mixture Model (GMM)으로 구성하고 이를 기반으로 구해지는 로그 기반의 우도 (Likelihood)를 사용한다. 특히, 변별적 가중치 학습을 사용하여 최적화된 가중치를 특징벡터에 인가하여 주요 감정을 식별하는 데 이용하여 성능향상을 도모한다. 실험결과 제안된 감정 인식이 기존의 방법보다 우수한 성능을 보인 것을 알 수 있었다.

고장진단 기능을 갖는 선박 횡동요 감요 장치 용 제어시스템 개발 (Development of Control System for Anti-Rolling Tank of Ships with Fault Detection Capability)

  • 원문철;류상현;최광식;정윤호;류재문;지용진
    • 한국해양공학회지
    • /
    • 제24권3호
    • /
    • pp.64-71
    • /
    • 2010
  • This paper summarizes the development of an ART control system panel with a touch screen and sensors to measure the roll and roll rate of ships. The control system hardware consists of two micro-processors, analog and digital I/O circuits, various relay circuits, etc. Sensor fusion and moving cross algorithms are implemented to accurately estimate the roll angle and roll period. In addition, the control system adopts a fault detection algorithm to inform users of ART system faults. A touch screen in the control panel can display the ART system states and faults. The performance of the developed system was verified on real sea trials.

Positioning and Driving Control of Fork-type Automatic Guided Vehicle With Laser Navigation

  • Kim, Jaeyong;Cho, Hyunhak;Kim, Sungshin
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제13권4호
    • /
    • pp.307-314
    • /
    • 2013
  • We designed and implemented a fork-type automatic guided vehicle (AGV) with a laser guidance system. Most previous AGVs have used two types of guidance systems: magnetgyro and wire guidance. However, these guidance systems have high costs, are difficult to maintain with changes in the operating environment, and can drive only a pre-determined path with installed sensors. A laser guidance system was developed for addressing these issues, but limitations including slow response time and low accuracy remain. We present a laser guidance system and control system for AGVs with laser navigation. For analyzing the performance of the proposed system, we designed and built a fork-type AGV, and performed repetitions of our experiments under the same working conditions. The results show an average positioning error of 51.76 mm between the simulated driving path and the driving path of the actual fork-type AGV. Consequently, we verified that the proposed method is effective and suitable for use in actual AGVs.