• Title/Summary/Keyword: Sensor fusion

검색결과 815건 처리시간 0.025초

플로우 네트워크를 이용한 지능형 로봇의 경로계획 (Path Planning for an Intelligent Robot Using Flow Networks)

  • 김국환;김형;김병수;이순걸
    • 로봇학회논문지
    • /
    • 제6권3호
    • /
    • pp.255-262
    • /
    • 2011
  • Many intelligent robots have to be given environmental information to perform tasks. In this paper an intelligent robot, that is, a cleaning robot used a sensor fusing method of two sensors: LRF and StarGazer, and then was able to obtain the information. Throughout wall following using laser displacement sensor, LRF, the working area is built during the robot turn one cycle around the area. After the process of wall following, a path planning which is able to execute the work effectively is established using flow network algorithm. This paper describes an algorithm for minimal turning complete coverage path planning for intelligent robots. This algorithm divides the whole working area by cellular decomposition, and then provides the path planning among the cells employing flow networks. It also provides specific path planning inside each cell guaranteeing the minimal turning of the robots. The proposed algorithm is applied to two different working areas, and verified that it is an optimal path planning method.

다중센서-다중프레임 기반 표적분할기법 (A Target Segmentation Method Based on Multi-Sensor/Multi-Frame)

  • 이승연
    • 한국군사과학기술학회지
    • /
    • 제13권3호
    • /
    • pp.445-452
    • /
    • 2010
  • Adequate segmentation of target objects from the background plays an important role for the performance of automatic target recognition(ATR) system. This paper presents a new segmentation algorithm using fuzzy thresholding to extract a target. The proposed algorithm consists of two steps. In the first step, the region of interest(ROI) including the target can be automatically selected by the proposed robust method based on the frame difference of each image sensor. In the second step, fuzzy thresholding with a proposed membership function is performed within the only ROI selected in the first step. The proposed membership function is based on the similarity of intensity and the adjacency of target area on each image. Experimental results applied to real CCD/IR images show a good performance and the proposed algorithm is expected to enhance the performance of ATR system using multi-sensors.

Efficiently Managing Collected from External Wireless Sensors on Smart Devices Using a Sensor Virtualization Framework

  • 이병복;홍상기;이계선;김내수;고정길
    • 정보와 통신
    • /
    • 제30권10호
    • /
    • pp.79-85
    • /
    • 2013
  • By interacting with external wireless sensors, smartphones can gather high-fidelity data on the surrounding environment to develop various environment-aware, personalized applications. In this work we introduce the sensor virtualization module (SVM), which virtualizes external sensors so that smartphone applications can easily utilize a large number of external sensing resources. Implemented on the Android platform, our SVM simplifies the management of external sensors by abstracting them as virtual sensors to provide the capability of resolving conflicting data requests from multiple applications and also allowing sensor data fusion for data from different sensors to create new customized sensors elements. We envision our SVM to open the possibilities of designing novel personalized smartphone applications.

Markov process 및 상태천이확률 행렬 계산을 통한 사격통제장치 전처리필터 신뢰성 산출 기법 (A computation method of reliability for preprocessing filters in the fire control system using Markov process and state transition probability matrix)

  • 김재훈;유준
    • 한국군사과학기술학회지
    • /
    • 제2권2호
    • /
    • pp.131-139
    • /
    • 1999
  • An easy and efficient method is proposed for a computation of reliability of preprocessing filters in the fire control system when the sensor data are frequently unreliable depending on the operation environment. It computes state transition probability matrix after modeling filter states as a Markov process, and computing false alarm and detection probability of each filter state under the given sensor failure probability. It shows that two important indices such as distributed state probability and error variance can be derived easily for a reliability assessment of the given sensor fusion system.

  • PDF

다양한 센서 융합을 통한 효율적인 모바일로봇 프레임워크 설계 (On the Design of an Efficient Mobile Robot Framework by Using Collaborative Sensor Fusion)

  • 김동환;조성현;양연모
    • 대한임베디드공학회논문지
    • /
    • 제6권3호
    • /
    • pp.124-131
    • /
    • 2011
  • There are many researches in unmanned vehicles such as UGV(Unmanned Ground Vehicle), AUV(Autonomous Underwater Vehicle). In these researches, differential wheeled mobile robots are mainly used to develop the experimental stage algorithm because of the simplicity of modeling and control. Usually a commercial product used in the study, but in order to operate a commercial product to the restrictions because there would need to use a fixed protocol. Using the microprocessor makes the internal sensors(encoder and INS) and external sensors(ultrasonic sensors, infrared sensors) operate and to determine commands for robot operation. This paper propose a mobile robot design for suitable purpose.

Temperature Trend Predictive IoT Sensor Design for Precise Industrial Automation

  • Li, Vadim;Mariappan, Vinayagam
    • International journal of advanced smart convergence
    • /
    • 제7권4호
    • /
    • pp.75-83
    • /
    • 2018
  • Predictive IoT Sensor Algorithm is a technique of data science that helps computers learn from existing data to predict future behaviors, outcomes, and trends. This algorithm is a cloud predictive analytics service that makes it possible to quickly create and deploy predictive models as analytics solutions. Sensors and computers collect and analyze data. Using the time series prediction algorithm helps to predict future temperature. The application of this IoT in industrial environments like power plants and factories will allow organizations to process much larger data sets much faster and precisely. This rich source of sensor data can be networked, gathered and analyzed by super smart software which will help to detect problems, work more productively. Using predictive IoT technology - sensors and real-time monitoring - can help organizations exactly where and when equipment needs to be adjusted, replaced or how to act in a given situation.

Positional Tracking System Using Smartphone Sensor Information

  • Kim, Jung Yee
    • Journal of Multimedia Information System
    • /
    • 제6권4호
    • /
    • pp.265-270
    • /
    • 2019
  • The technology to locate an individual has enabled various services, its utilization has increased. There were constraints such as the use of separate expensive equipment or the installation of specific devices on a facility, with most of the location technology studies focusing on the accuracy of location verification. These constraints can result in accuracy within a few tens of centimeters, but they are not technology that can be applied to a user's location in real-time in daily life. Therefore, this paper aims to track the locations of smartphones only using the basic components of smartphones. Based on smartphone sensor data, localization accuracy that can be used for verification of the users' locations is aimed at. Accelerometers, Wifi radio maps, and GPS sensor information are utilized to implement it. In forging the radio map, signal maps were built at each vertex based on the graph data structure This approach reduces traditional map-building efforts at the offline phase. Accelerometer data were made to determine the user's moving status, and the collected sensor data were fused using particle filters. Experiments have shown that the average user's location error is about 3.7 meters, which makes it reasonable for providing location-based services in everyday life.

초음파 거리 센서의 계측오차 감소를 위한 연구 (A study to reduce measurement errors of an ultrasonic rangefinder)

  • 도용태;김태호;유석환
    • 전자공학회논문지S
    • /
    • 제34S권11호
    • /
    • pp.43-52
    • /
    • 1997
  • Ultrasonic sensors are widely employed in detecting range to a target by the virtue of their low cost and simplicity. However, the sensor's measurements are corrupted by systematic errors due mainly to the dependency of sound speed upon surrounding conditions and random errors of uncertain origin. In this paper, we present the results of research carried out to reduce these errors for increasing the reliability of an untrasonic sensor system to be used in orbotic or other automated system's range finding. The sensor system designed herein is in a peuliar structure having a reference target and two receivers. Echoes from a small reference target placed at a known distance are used for compensating the variations of sound speed according to the changes of sensing conditions. Unlike existing ones, the technique proposed can compensate the effects of temperature or any other physical parameters without an additional sensor dedicated to the compensation. The measurements by two redundantly employed receivers are fused to reduce random errors in a statistical sense. The correlation of the signals from the receivers sharing a hardware in part is considered in the fusion process. The methodology desicribed in this paepr is conceptually simple, easy to be implemented, and effetive to increase the accuracy of the sensor measurements as experimental results confirm.

  • PDF

Structural and Electrical Properties of WOx Thin Films Deposited by Direct Current Reactive Sputtering for NOx Gas Sensor

  • Yoon, Young-Soo;Kim, Tae-Song;Park, Won-Kook
    • 한국세라믹학회지
    • /
    • 제41권2호
    • /
    • pp.97-101
    • /
    • 2004
  • W $O_{x}$-based semiconductor type thin film gas sensor was fabricated for the detection of N $O_{x}$ by reactive d.c. sputtering method. The relative oxidation state of the deposited W $O_{x}$ films was approximately compared by the calculation of the difference of the binding energy between Ols to W4 $f_{7}$2/ core level XPS spectra in the standard W $O_3$ powder of known composition. As the annealing temperature increased from 500 to 80$0^{\circ}C$, relative oxygen contents and grain size of the sputtered films were gradually increased. As the results of sensitivity ( $R_{gas}$/ $R_{air}$) measurements for the 5 ppm N $O_2$ gas, the sensitivity was 110 and the sensor showed recovery time as fast as 200 s. The other sensor properties were examined in terms of surface microstructure, annealing temperature, and relative oxygen contents. These results indicated that the W $O_3$ thin film with well controlled structure is a good candidate for monitoring and controlling of automobile exhaust.haust.t.t.t.

광추적기와 내부 비전센서를 이용한 수술도구의 3차원 자세 및 위치 추적 시스템 (3D Orientation and Position Tracking System of Surgical Instrument with Optical Tracker and Internal Vision Sensor)

  • 조영진;오현민;김민영
    • 제어로봇시스템학회논문지
    • /
    • 제22권8호
    • /
    • pp.579-584
    • /
    • 2016
  • When surgical instruments are tracked in an image-guided surgical navigation system, a stereo vision system with high accuracy is generally used, which is called optical tracker. However, this optical tracker has the disadvantage that a line-of-sight between the tracker and surgical instrument must be maintained. Therefore, to complement the disadvantage of optical tracking systems, an internal vision sensor is attached to a surgical instrument in this paper. Monitoring the target marker pattern attached on patient with this vision sensor, this surgical instrument is possible to be tracked even when the line-of-sight of the optical tracker is occluded. To verify the system's effectiveness, a series of basic experiments is carried out. Lastly, an integration experiment is conducted. The experimental results show that rotational error is bounded to max $1.32^{\circ}$ and mean $0.35^{\circ}$, and translation error is in max 1.72mm and mean 0.58mm. Finally, it is confirmed that the proposed tool tracking method using an internal vision sensor is useful and effective to overcome the occlusion problem of the optical tracker.