• 제목/요약/키워드: Sensor detection model

검색결과 482건 처리시간 0.027초

Study on the possibility of the aerosol and/or Yellow dust detection in the atmosphere by Ocean Scanning Multispectral Imager(OSMI)

  • Chung, Hyo-Sang;Park, Hye-Sook;Bag, Gyun-Myeong;Yoon, Hong-Joo;Jang, Kwang-Mi
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 1998년도 Proceedings of International Symposium on Remote Sensing
    • /
    • pp.409-414
    • /
    • 1998
  • To examine the detectability of the aerosol and/or Yellow dust from China crossing over the Yellow sea, three works carried out as follows , Firstly, a comparison was made of the visible(VIS), water vapor(WV), and Infrared(IR) images of the GMS-5 and NOAA/AVHRR on the cases of yellow sand event over Korea. Secondly, the spectral radiance and reflectance(%) was observed during the yellow sand phenomena on April, 1998 in Seoul using the GER-2600 spectroradiometer, which observed the reflected radiance from 350 to 2500 nm in the atmosphere. We selected the optimum wavelength for detecting of the yellow sand from this observation, considering the effects of atmospheric absorption. Finally, the atmospheric radiance emerging from the LOWTRAN-7 radiative transfer model was simulated with and without yellow sand, where we used the estimated aerosol column optical depth ($\tau$ 673 nm) in the Meteorological Research Institute and the d'Almeida's statistical atmospheric aerosol radiative characteristics. The image analysis showed that it was very difficult to detect the yellow sand region only by the image processing because the albedo characteristics of the sand vary irregularly according to the density, size, components and depth of the yellow sand clouds. We found that the 670-680 nm band was useful to simulate aerosol characteristics considering the absorption band from the radiance observation. We are now processing the simulation of atmospheric radiance distribution in the range of 400-900 nm. The purpose of this study is to present the preliminary results of the aerosol and/or Yellow dust detectability using the Ocean Scanning Multispectral Imager(OSMI), which will be mounted on KOMPSAT-1 as the ocean color monitoring sensor with the range of 400-900 nm wavelength.

  • PDF

손가락 마디 추정을 이용한 비전 및 깊이 정보 기반 손 인터페이스 방법 (Vision and Depth Information based Real-time Hand Interface Method Using Finger Joint Estimation)

  • 박기서;이대호;박영태
    • 디지털융복합연구
    • /
    • 제11권7호
    • /
    • pp.157-163
    • /
    • 2013
  • 본 논문에서는 손가락 마디 추정을 이용한 비전 및 깊이 정보 기반 손 인터페이스 방법을 제안한다. 먼저 비주얼 영상 및 깊이 정보 영상을 매핑한 후 왼손과 오른손의 영역의 레이블링 및 윤곽선 잡음 보정 후 각 손 영역에 대하여 손 중심점 및 회전각을 구현한다. 그리고 손 중심점에서 일정간격의 원을 확장하여 손 경계 교차점의 중간 지점을 계산하여 손가락 끝점과 마디를 추정하여 사용자의 손가락 동작을 인식한다. 본 방법을 실험한 결과 손의 회전 및 손가락 시작점 및 끝점을 정확하게 추정하여 다양한 손동작 인식 및 제어가 가능함을 보였다. 왼손과 오른손을 사용하여 다양한 손 포즈에 대해 실험한 결과, 본 논문의 제안 방법은 평균 90% 이상의 정확도로 초당 25프레임 이상의 처리 성능을 보였다. 제안 방법은 컴퓨터간의 HCI 제어, 게임, 교육 등의 비접촉식 인터페이스 응용분야에 적용될 수 있다.

SENSITIVITY ANALYSIS TO EVALUATE THE TRANSPORT PROPERTIES OF CdZnTe DETECTORS USING ALPHA PARTICLES AND LOW-ENERGY GAMMA-RAYS

  • Kim, Kyung-O;Ahn, Woo-Sang;Kwon, Tae-Je;Kim, Soon-Young;Kim, Jong-Kyung;Ha, Jang-Ho
    • Nuclear Engineering and Technology
    • /
    • 제43권6호
    • /
    • pp.567-572
    • /
    • 2011
  • A sensitivity analysis of the methods used to evaluate the transport properties of a CdZnTe detector was performed using two different radiations (${\alpha}$ particle and gamma-ray) emitted from an $^{241}Am$ source. The mobility-lifetime products of the electron-hole pair in a planar CZT detector ($5{\times}5{\times}2\;mm^3$) were determined by fitting the peak position as a function of biased voltage data to the Hecht equation. To verify the accuracy of these products derived from ${\alpha}$ particles and low-energy gamma-rays, an energy spectrum considering the transport property of the CZT detector was simulated through a combination of the deposited energy and the charge collection efficiency at a specific position. It was found that the shaping time of the amplifier module significantly affects the determination of the (${\mu}{\tau}$) products; the ${\alpha}$ particle method was stabilized with an increase in the shaping time and was less sensitive to this change compared to when the gamma-ray method was used. In the case of the simulated energy spectrum with transport properties evaluated by the ${\alpha}$ particle method, the peak position and tail were slightly different from the measured result, whereas the energy spectrum derived from the low-energy gamma-ray was in good agreement with the experimental results. From these results, it was confirmed that low-energy gamma-rays are more useful when seeking to obtain the transport properties of carriers than ${\alpha}$ particles because the methods that use gamma-rays are less influenced by the surface condition of the CZT detector. Furthermore, the analysis system employed in this study, which was configured by a combination of Monte Carlo simulation and the Hecht model, is expected to be highly applicable to the study of the characteristics of CZT detectors.

Complexity Estimation Based Work Load Balancing for a Parallel Lidar Waveform Decomposition Algorithm

  • Jung, Jin-Ha;Crawford, Melba M.;Lee, Sang-Hoon
    • 대한원격탐사학회지
    • /
    • 제25권6호
    • /
    • pp.547-557
    • /
    • 2009
  • LIDAR (LIght Detection And Ranging) is an active remote sensing technology which provides 3D coordinates of the Earth's surface by performing range measurements from the sensor. Early small footprint LIDAR systems recorded multiple discrete returns from the back-scattered energy. Recent advances in LIDAR hardware now make it possible to record full digital waveforms of the returned energy. LIDAR waveform decomposition involves separating the return waveform into a mixture of components which are then used to characterize the original data. The most common statistical mixture model used for this process is the Gaussian mixture. Waveform decomposition plays an important role in LIDAR waveform processing, since the resulting components are expected to represent reflection surfaces within waveform footprints. Hence the decomposition results ultimately affect the interpretation of LIDAR waveform data. Computational requirements in the waveform decomposition process result from two factors; (1) estimation of the number of components in a mixture and the resulting parameter estimates, which are inter-related and cannot be solved separately, and (2) parameter optimization does not have a closed form solution, and thus needs to be solved iteratively. The current state-of-the-art airborne LIDAR system acquires more than 50,000 waveforms per second, so decomposing the enormous number of waveforms is challenging using traditional single processor architecture. To tackle this issue, four parallel LIDAR waveform decomposition algorithms with different work load balancing schemes - (1) no weighting, (2) a decomposition results-based linear weighting, (3) a decomposition results-based squared weighting, and (4) a decomposition time-based linear weighting - were developed and tested with varying number of processors (8-256). The results were compared in terms of efficiency. Overall, the decomposition time-based linear weighting work load balancing approach yielded the best performance among four approaches.

다중 애플리케이션 처리를 위한 경량 인공지능 하드웨어 기반 통합 프레임워크 연구 (A Study of Unified Framework with Light Weight Artificial Intelligence Hardware for Broad range of Applications)

  • 전석훈;이재학;한지수;김병수
    • 한국전자통신학회논문지
    • /
    • 제14권5호
    • /
    • pp.969-976
    • /
    • 2019
  • 경량 인공지능 하드웨어는 다양한 문제의 해결을 위해 멀티모달 센서 데이터를 입력받아 특징 선택, 추출, 차원축소, 정규화 과정을 수행한 후 인공지능 엔진으로 예측 결과를 도출한다. 다양한 애플리케이션에서 높은 성능을 달성하기 위해서는 이러한 경량 인공지능 하드웨어의 초 매개변수와 전체적인 전처리 시스템의 구성을 데이터에 맞춰 최적화할 필요가 있다. 본 논문에서는 경량 인공지능 하드웨어의 효율적인 제어 및 최적화를 위한 통합 프레임워크를 제안한다. 제안된 통합 프레임워크는 데이터 전처리 및 뉴로모픽 기반 경량 인공지능 엔진을 유연하게 재구성할 수 있으며, 최적의 모델을 생성할 수 있다. 기능검증을 위해 손글씨 이미지 데이터 세트와 관성 센서 데이터 기반의 낙상 검출 데이터 세트를 사용하였으며, 실험 결과 제안하는 통합 프레임워크가 각각의 데이터 세트에서 90% 이상의 정확도를 갖는 최적의 모델을 생성함을 확인하였다.

메탄 가스 기반 가스 누출 위험 예측을 위한 다변량 특이치 제거 (Multivariate Outlier Removing for the Risk Prediction of Gas Leakage based Methane Gas)

  • 홍고르출;김미혜
    • 한국융합학회논문지
    • /
    • 제11권12호
    • /
    • pp.23-30
    • /
    • 2020
  • 본 연구에서는, 천연가스(NG) 데이터와 가스 관련 환경 요소 간의 관계를 기계학습 알고리즘을 사용하여 가스 누출 데이터를 직접 측정하지 않고 가스 누출 위험 수준을 예측하였다. 이번 연구는 서버가 제공하는 오픈 데이터인 IoT 기반 원격 제어 피카로(Picarro) 가스 센서 사양을 기반으로 사용했다. 천연 가스는 공기 중으로 누출이 되며, 대기 오염, 환경, 그리고 건강에 큰 문제가 된다. 본 연구에서 제안하는 방법은 천연 가스의 누출 위험 예측을 위한 랜덤 포레스트(Random Forest) 분류 기반 다변량 특이치 제거 방법이다. 비지도 k-평균 클러스터링 후에 실험 데이터 집합은 불균형 데이터이다. 따라서 우리는 제안된 모델이 중간과 높은 위험 수준을 가장 잘 예측할 수 있다는 점에 초점을 맞춘다. 이 경우 각 분류 모델에 대한 수신자 조작 특성(ROC) 곡선, 정확도, 평균 표준 오차(MSE)를 비교했다. 실험 결과로 정확도, 수신자 조작 특성의 곡선 아래 영역(AUC, Area Under the ROC Curve), MSE가 각각 MOL_RF의 경우 99.71%, 99.57%, 및 0.0016의 결과 값을 얻었다.

동특성 앙상블 학습 기반 구조물 진단 모니터링 분산처리 시스템 (Decentralized Structural Diagnosis and Monitoring System for Ensemble Learning on Dynamic Characteristics)

  • 신윤수;민경원
    • 한국전산구조공학회논문집
    • /
    • 제34권4호
    • /
    • pp.183-189
    • /
    • 2021
  • 구조물에 장기적으로 발생하는 노후화를 정량적으로 파악하기 위해 상시진동 데이터를 활용한 일반화된 모니터링 시스템에 관한 연구가 세계적으로 활발히 수행중이다. 본 연구에서는 구조물에서 장기적으로 취득되는 동특성을 앙상블 학습에 활용하여 구조물의 이상을 감지하기 위한 보급형 엣지 컴퓨팅 시스템을 구축하였다. 시스템의 하드웨어는 라즈베리파이와 보급형 가속도계, 기울기센서, GPS RTK 모듈, 로라 모듈로 구성됐다. 실험실 규모의 구조물 모형 진동실험을 통해 동특성을 활용한 앙상블 학습의 구조물 이상감지를 검증하였으며, 실험을 기반으로 한 실시간 동특성 추출 분산처리 알고리즘을 라즈베리파이에 탑재하였다. 구축된 시스템을 하우징하고 포항시 행정복지센터에 설치하여 데이터를 취득함으로써 개발된 시스템의 현장 적용성을 검증하였다.

Design of Smart Farm Growth Information Management Model Based on Autonomous Sensors

  • Yoon-Su Jeong
    • 한국컴퓨터정보학회논문지
    • /
    • 제28권4호
    • /
    • pp.113-120
    • /
    • 2023
  • 스마트 팜은 IoT 기술과 인공지능 기술이 접목되면서 농작물에 투입되는 노동력·에너지·양분 등을 최소화는 연구가 꾸준히 증가하고 있는 상황이다. 그러나, 스마트 팜에서 농작물의 생육 정보를 효율적으로 관리하는 연구는 현재까지 미진한 상태이다. 본 논문에서는 스마트 팜에 자율 센서를 적용하여 농작물의 생육 정보를 효율적으로 모니터링할 수 있는 관리 기법을 제안한다. 제안 기법은 농작물의 생육 정보를 자율 센서를 통해 수집한 후 생육 정보를 농작물 재배에 재활용하는데 초점을 갖는다. 특히, 제안 기법은 농작물의 생육 정보를 한 슬롯으로 할당한 후 로드밸런싱을 수행하도록 농작물별로 가중치를 부여하며, 농작물의 생육 정보 간의 간섭을 서로 최소화한다. 또한, 제안 기법은 농작물의 생육 정보를 4단계 (센싱 탐지 단계, 센싱 전송 단계, 애플리케이션 처리 단계, 데이터 관리 단계 등)로 처리할 때, 농작물의 중요 관리점을 실시간으로 전산화하기 때문에 관리 기준 이외의 경우에는 즉각적인 경고 시스템이 동작한다. 성능평가 결과, 자율 센서의 정확도는 기존 기법보다 평균 22.9%의 향상된 결과를 얻었으며, 효율성은 기존 기법보다 평균 16.4% 향상된 결과를 얻었다.

Correlation Extraction from KOSHA to enable the Development of Computer Vision based Risks Recognition System

  • Khan, Numan;Kim, Youjin;Lee, Doyeop;Tran, Si Van-Tien;Park, Chansik
    • 국제학술발표논문집
    • /
    • The 8th International Conference on Construction Engineering and Project Management
    • /
    • pp.87-95
    • /
    • 2020
  • Generally, occupational safety and particularly construction safety is an intricate phenomenon. Industry professionals have devoted vital attention to enforcing Occupational Safety and Health (OHS) from the last three decades to enhance safety management in construction. Despite the efforts of the safety professionals and government agencies, current safety management still relies on manual inspections which are infrequent, time-consuming and prone to error. Extensive research has been carried out to deal with high fatality rates confronting by the construction industry. Sensor systems, visualization-based technologies, and tracking techniques have been deployed by researchers in the last decade. Recently in the construction industry, computer vision has attracted significant attention worldwide. However, the literature revealed the narrow scope of the computer vision technology for safety management, hence, broad scope research for safety monitoring is desired to attain a complete automatic job site monitoring. With this regard, the development of a broader scope computer vision-based risk recognition system for correlation detection between the construction entities is inevitable. For this purpose, a detailed analysis has been conducted and related rules which depict the correlations (positive and negative) between the construction entities were extracted. Deep learning supported Mask R-CNN algorithm is applied to train the model. As proof of concept, a prototype is developed based on real scenarios. The proposed approach is expected to enhance the effectiveness of safety inspection and reduce the encountered burden on safety managers. It is anticipated that this approach may enable a reduction in injuries and fatalities by implementing the exact relevant safety rules and will contribute to enhance the overall safety management and monitoring performance.

  • PDF

An Attention-based Temporal Network for Parkinson's Disease Severity Rating using Gait Signals

  • Huimin Wu;Yongcan Liu;Haozhe Yang;Zhongxiang Xie;Xianchao Chen;Mingzhi Wen;Aite Zhao
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제17권10호
    • /
    • pp.2627-2642
    • /
    • 2023
  • Parkinson's disease (PD) is a typical, chronic neurodegenerative disease involving the concentration of dopamine, which can disrupt motor activity and cause different degrees of gait disturbance relevant to PD severity in patients. As current clinical PD diagnosis is a complex, time-consuming, and challenging task that relays on physicians' subjective evaluation of visual observations, gait disturbance has been extensively explored to make automatic detection of PD diagnosis and severity rating and provides auxiliary information for physicians' decisions using gait data from various acquisition devices. Among them, wearable sensors have the advantage of flexibility since they do not limit the wearers' activity sphere in this application scenario. In this paper, an attention-based temporal network (ATN) is designed for the time series structure of gait data (vertical ground reaction force signals) from foot sensor systems, to learn the discriminative differences related to PD severity levels hidden in sequential data. The structure of the proposed method is illuminated by Transformer Network for its success in excavating temporal information, containing three modules: a preprocessing module to map intra-moment features, a feature extractor computing complicated gait characteristic of the whole signal sequence in the temporal dimension, and a classifier for the final decision-making about PD severity assessment. The experiment is conducted on the public dataset PDgait of VGRF signals to verify the proposed model's validity and show promising classification performance compared with several existing methods.