• Title/Summary/Keyword: Sensor coil

Search Result 279, Processing Time 0.028 seconds

FPCB-based Birdcage-Type Receiving Coil Sensor for Small Animal 1H 1.5 T Magnetic Resonance Imaging System (소 동물 1H 1.5 T 자기공명영상 장치용 유연인쇄기판 기반 새장형 수신 코일 센서)

  • Ahmad, Sheikh Faisal;Kim, Hyun Deok
    • Journal of Sensor Science and Technology
    • /
    • v.26 no.4
    • /
    • pp.245-250
    • /
    • 2017
  • A novel method to implement a birdcage-type receiving coil sensor for use in a magnetic resonance imaging(MRI) system has been demonstrated employing a flexible printed circuit board (FPCB) fabrication technique. Unlike the conventional methods, the two-dimensional shape of the coil sensor is first implemented as a FPCB and then it is attached to the surface of a cylindrical supporting structure to implement the three-dimensional birdcage-type coil sensor. The proposed method is very effective to implement object-specific MRI coil sensors especially for small animal measurements in research and preclinical applications since the existing well-developed FPCB-based techniques can easily meet the requirements on accuracies and costs during coil implement process. The performances of the coil sensor verified through $^1H$ 1.5T MRI measurements for small animals and it showed excellent characteristics by providing a high spatial precision and a high signal-to-noise ratio.

Effects of reflective index of fiber sensor coil end on current measurement (광CT 센서코일 끝단의 반사율이 전류측정에 미치는 영향)

  • Park, Hyoung-Jun;Kim, Hyun-Jin;Song, Min-Ho
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2008.05a
    • /
    • pp.74-77
    • /
    • 2008
  • We improved an efficiency of fiber-optic current transformer by using a metal-coated sensor coil. To reduce the linear birefringence, we used a length of spun fiber as sensor coil, and then used a flint glass fiber coil for comparison. To make the sensor coil in the reflection type, we used different reflection mirrors at the end of the sensor coil, such as a Faraday rotator mirror, a simple mirror, a metal-coated fiber end and a simple fiber end. From the experimental results, the linear error of current measurements were less than ${\sim}$ 0.2 % regardless of the mirror types. The metal-coated sensor was the most cost-effective considering the fabrication cost and the simple structure.

  • PDF

The Design & Manufacture of Multi-coil Eddy Current Sensor and Characteristic Analysis (다중코일 와전류 센서 설계제작 및 특성분석)

  • Ahn, Y.S.;Gil, D.S.;Park, S.G.
    • Journal of Power System Engineering
    • /
    • v.15 no.3
    • /
    • pp.65-69
    • /
    • 2011
  • This paper introduces the multi-coil eddy current sensor and its characteristic in magnetic material gas turbine rotor. In the past, magnetic particle inspection method was used for qualitative defect evaluation in magnetic material gas turbine rotor. And the ultrasonic inspection method was used for quantitative defect evaluation. Nowadays, eddy current method is used in magnetic gas turbine rotor inspection due to advanced sensor design technology. We developed multi-coil eddy current sensor for the rotor dovetail inspection. At first, rotor stress is analyzed for the determination of sensor position and number. The sensor coils are designed to cover the stress concentration area of rotor dovetail. We select optimum frequency according to material standard penetration data and experiment results. The rotor mock-up and artificial defects were made for the signal detection and resolution analysis of multi-coil eddy current sensor. The results show that signal detection and resolution capabilities are enhanced in comparison to the commercialized sensor enough for the gas turbine rotor inspection. So, this developed multi-coil eddy current sensor substituted for commercialized one and it applied in real gas turbine rotor inspection.

The Micro Electromagnetic Force Measurement of Voice-coil Actuator using Semiconductor Piezoresistive Type Vibration Sensor (실리콘 압저항형 진동 센서를 이용한 Voice-coil형 구동기의 미소 전자력 측정)

  • Gwon, Gi-Jin;Lee, Gi-Chan;Park, Se-Gwang
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.48 no.2
    • /
    • pp.147-152
    • /
    • 1999
  • Semiconductor piezoresistive type vibration sensor was fabricated by using semiconductor process and micromachining technology. To measure the micro electromagnetic force between coil and magnet, fabricated vibration sensor was used. Toapply micro electromagnetic force produced from the micro exciter, small-sized NdFeB permanent magnet was attached on the mass of the fabricated vibration sensor. The measured electromagnetic force are about 5~180dyne when the applied sinusoidal current of 1KHz in the range of 1.5~8mA. The measurement of micro electromagnetic forcewas performed by changing the distance between coil and magnet. Output characteristics of micro electromagnetic force according to the applied coil current were linear. Furthermore, output results were used to get the transfer constant that is important to decide the efficiency and the performance of the coil and magnet.

  • PDF

A Study on sorting out base metal using eddy current sensor (와전류 센서를 이용한 금속 모재 선별에 관한 연구)

  • Lee G.S.;Kim T.O.;Kim H.Y.;Ahn J.H.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.1788-1792
    • /
    • 2005
  • Eddy current sensor is representative instrument measuring gap to base metal and sensing trouble in base metal. The existing eddy current sensor works as measuring variance of sensor coil's inductance. But, sensor coil have phenomenon that not only inductance but also real resistance varies in real action. Conductivity and Permeability are main variable in sensor coil's varying impedance(inductance, real resistance). By searching relationship between conductivity-permeability and sensor coil's impedance, eddy current sensor gain advantage of elevation of accuracy, removal of alignment to each base metal, and continuous sensing to varying base metal.

  • PDF

The Development of Diagnostic Sensor for Inner Deterioration of Covered Electric Wire (피복전선의 내부 열화 검출용 센서 개발)

  • Kim, Ki-Joon
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.27 no.4
    • /
    • pp.244-249
    • /
    • 2014
  • In this research, it have developed a sensor that could diagnose inner deterioration of covered wires. With this sensor it observed results from simulation, and the attribute required for realization. For simulation it have used FLUX, it have considered all of geometric and electromagnetic information from coil and base metal that influences eddy current sensor's property in order to predict the final result. It assumed there is no mutual inductance in the coil with N number of turns, because equivalent current flows in coil that is continuously connected in eddy current sensor. It assumed circular coil loop draws a circle, always have self inductance, and they are connected in series and overlapped according number of turns (N) in coil, and bobbin configuration. Actual sensor was produced with consideration of inductance and number of turns (N). In conclusion, it were able to test the dependency through results from simulation, actual measurement, and modeling of simulation. It is considered that attributes of respective base metal and structure can be predicted by simulating in advance.

Numerical Modeling of the Hall Sensor Signal Used in Pulsed Eddy Current Testing and Comparison of Its Characteristics with a Coil Sensor Signal (홀센서를 사용한 펄스와전류탐상 신호의 수치모델링 및 코일센서 신호와의 특성 비교)

  • Shin, Young Kil
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.36 no.6
    • /
    • pp.490-495
    • /
    • 2016
  • Pulsed eddy current (PEC) testing signals have typically been obtained from the electromotive force induced in a sensor coil. However, an increasing number of studies have elected to incorporate the Hall plate as a sensor. Thus, accurate numerical modeling of the Hall sensor signal is necessary. In this study, a PEC probe is designed and a numerical modeling program is written so that Hall sensor signals and coil sensor signals can be calculated simultaneously. First, a step current is used as the input current. The predicted Hall sensor signals show similar characteristics to those of the experimental signals reported by other researchers. The characteristics of the two types of signals are then analyzed and compared as the thickness of test object changes. The results show that the Hall sensor signal provides less information for evaluating the thickness of the test object than the coil sensor signal. The response signals from a pulsed input current are also calculated, and it is confirmed that an equivalent reversed signal pattern appeared after the pulse width at both signals.

Temperature-difference Flow Sensor Using Multiple Fiber Bragg Gratings

  • Kim, Kyunghwa;Eom, Jonghyun;Sohn, Kyungrak;Shim, Joonhwan
    • Current Optics and Photonics
    • /
    • v.6 no.3
    • /
    • pp.297-303
    • /
    • 2022
  • Multiple fiber Bragg gratings (FBGs) have been proposed and demonstrated for gas-flow measurements in a flow channel, using the temperature-difference method. This sensor consists of two FBG temperature sensors and two coil heaters. Coil heaters are used to heat the FBGs. The flow rate of the gas can be obtained by monitoring the difference in the Bragg-wavelength shifts of the two FBGs, which has features that exclude the effect of temperature fluctuations. In this study, experiments are conducted to measure the wavelength shift based on the flow rate, and to evaluate the gas-flow rate in a gas tube. Experimental results show that the sensor has a linear characteristic over a flow-rate range from 0 to 25 ℓ/min. The measured sensitivity of the sensor is 3.2 pm/(ℓ/min) at a coil current of 120 mA.

Design of a Wireless Intraocular Pressure Sensor Based on MEMS Technology (안압의 비접촉 검출을 위한 MEMS 기반의 센서 설계)

  • Kang, Buung-Joo;Park, Jong-Hoon;Lee, So-Hyun;Kang, Ji-Yoon;Park, Chang-Kun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.15 no.4
    • /
    • pp.905-912
    • /
    • 2011
  • Interaocular pressure (IOP) sensor and external coil to detect the resonance frequency of the IOP sensor are designed and implemented using MEMS technology. The IOP sensor is designed using 3-D electromagnetic (EM) simulation. The resonance frequency of IOP sensor needs to be lower than that of the external coil. Additionally, the resonance frequency of the IOP sensor needs to be located near the resonance frequency of the coil to get the sufficient amplitude of phase variation. The frequency where the phase peak appears must be constant according to the distance between the IOP sensor and the external coil. From the measurement results, we demonstrated that the designed IOP sensor has the same resonance frequency with various distances between the IOP sensor and the coil.

A study on the application of Rogowski coil on the LTCC (저온소성 다층 세라믹 기판에 로고스키코일을 내장한 전류센서에 관한 연구)

  • Park, Sung-Hyun;Kim, Eun-Sup;Shin, Byoung-Chul
    • Journal of Sensor Science and Technology
    • /
    • v.19 no.6
    • /
    • pp.475-482
    • /
    • 2010
  • Rogowski coil which detects magnetic flux on current changes. It is used for digital integration with watt-hour meter's current sensor, because, Rogowski coil has non-cored or non-magnetic core structure, so that, it cannot be saturated magnetically. This is a study for inventing accurate electric current sensors that have been applied on multi-layer ceramic substrate. We have confirmed its properties from each different layer's materials and pattern sizes by MWS 3D Electromagnetic field analysis program. And, after sensor manufacturing on multi-layer ceramic substrate, we confirmed its sensing quality is reliable as accurate electric current sensor for watt-hour meter.