• 제목/요약/키워드: Sensor arrays

검색결과 147건 처리시간 0.023초

Michelson 간섭계형 광섬유 간섭센서 어레이 (Time-Division Multiplexing(TDM) of Michelson type Fiber-optic Interferometric Sensor Arrays)

  • 양진성;김명욱;이상배;조재철;최상삼
    • 한국광학회지
    • /
    • 제1권2호
    • /
    • pp.125-129
    • /
    • 1990
  • 구성이 간단하고 시스템화 하기에 용이한 시간분할(TDM)방식 Michelson 간섭계형 광섬유 간섭센서 어레이를 구성하고 다점계측에의 응용 가능성을 보였다. 세 개의 감지부분을 갖는 Michelson 간섭계형 광섬유 간섭센서 어레이에 광펄스를 입사시키고 각 광섬유 센서로부터 시간에 따라 되돌아오는 신호 광펄스들을 검출하기 직전에 Mach-Zehnder 간섭계 형태의 보상 간섭계를 두어 각 광섬유 간섭센서 부분에서의 외부 영향에 따른 위상변화를 관찰하였다.

  • PDF

모니터링 정확도와 운용 강건성을 고려한 개인전투체계용 착용형 생체센서 어레이의 최적 위치 분석 (Analysis of the Optimal Location of Wearable Biosensor Arrays for Individual Combat System Considering Both Monitoring Accuracy and Operational Robustness)

  • 하슬기;박상헌;임현철;백승호;김도경;윤상희
    • 한국군사과학기술학회지
    • /
    • 제22권2호
    • /
    • pp.287-297
    • /
    • 2019
  • Monitoring for the physiological state of a solider is essential to the realization of individual combat system. Despite all efforts over the last decades, there is no report to point out the optimal location of the wearable biosensors considering both monitoring accuracy and operational robustness. In response, we quantitatively measure body temperature and heartrate from 34 body parts using 2 kinds of biosensor arrays, each of which consists of a thermocouple(TC) sensor and either a photoplethysmography(PPG) sensor or an electrocardiography(ECG) sensor. The optimal location is determined by scoring each body part in terms of signal intensity, convenience in use, placement durability, and activity impedance. The measurement leads to finding the optimal location of wearable biosensor arrays. Thumb and chest are identified as best body parts for TC/PPG sensors and TC/ECG sensors, respectively. The findings will contribute to the successful development of individual combat system.

CCD를 이용한 미세렌즈의 MTF 측정 (CCD Scanning type MTF Measuring System for Microlens Arrays)

  • 이윤우;조현모;이인원;박태호;윤성균;서형원
    • 한국광학회지
    • /
    • 제5권3호
    • /
    • pp.364-371
    • /
    • 1994
  • 미세렌즈 배열의 실시간 분해능 평가를 위하여 CCD를 이용한 MTF 측정장치를 제작하였다. 현미경 대물렌즈로 상을 확대한 후 CCD를 사용하여 직접 광세기 분포함수를 측정하였으며 사용된 CCD의 화소 크기와 간격, 그리고 감도의 균질성 등을 고려하여 측정한 MTF를 보정하였다. 마이크로 컴퓨터를 사용하여 측정자동화 하였으며 자세한 보정방법과 측정장치에 대하여 설명하였다.

  • PDF

산화물 반도체를 이용한 최신 호기센서 기술 동향 (Recent Developments in Metal Oxide Gas Sensors for Breath Analysis)

  • 윤지욱;이종흔
    • 세라미스트
    • /
    • 제22권1호
    • /
    • pp.70-81
    • /
    • 2019
  • Breath analysis is rapidly evolving as a non-invasive disease recognition and diagnosis method. Metal oxide gas sensors are one of the most ideal platforms for realizing portable, hand-held breath analysis devices in the near future. This paper reviewed the recent developments in metal oxide gas sensors detecting exhaled biomarker gases such as nitric oxides, acetone, ammonia, hydrogen sulfide, and hydrocarbons. Emphasis was placed on strategies to tailor sensing materials/films capable of highly selective and sensitive detection of biomarker gases with negligible cross-response to ethanol, the major interfering breath gas. Specific examples were given to highlight the validity of the strategies, which include optimization of sensing temperature, doping additives, utilizing acid-base interaction, loading catalysts, and controlling gas reforming reaction. In addition, we briefly discussed the design and optimization method of gas sensor arrays for implementing the simultaneous assessment of multiple diseases. Breath analysis using high-performance metal oxide gas sensors/arrays will open new roads for point-of-care diagnosis of diseases such as asthma, diabetes, kidney dysfunction, halitosis, and lung cancer.

Design of a 170 GHz Notch Filter for the KSTAR ECE Imaging Sensor Application

  • Mohyuddin, Wahab;Woo, Dong Sik;Kim, Sung Kyun;Kim, Kang Wook;Choi, Hyun-Chul
    • 센서학회지
    • /
    • 제25권1호
    • /
    • pp.8-12
    • /
    • 2016
  • A planar, light-weight, and low-cost notch filter structure is required for the KSTAR ECEI (Electron Cyclotron Emission Imaging) system to protect the mixer arrays from spurious plasma heating power. Without protection, this heating power can significantly degrade or damage the performance of the mixer array. To protect mixer arrays, a frequency selective surface (FSS) structure is the suitable choice as a notch filter to reject the spurious heating power. The FSS notch filter should be located between the lenses of the ECEI system. This paper presents a 170 GHz FSS notch filter for the KSTAR ECEI sensor application. The design of such an FSS notch filter is based on the single-sided square loop geometry, because that makes it relatively insensitive to the incident angle of incoming wave. The FSS notch filter exhibits high notch rejection with low pass-band insertion loss over a wide range of incident angles. This paper also reviews the simulated and measured results. The proposed FSS notch filter might be implemented in other millimeter-wave plasma devices.

광섬유 브래그 격자 센서를 이용한 구조물의 모드 형상 측정 (Mode Sensing of a Composite Beam Using Fiber Bragg Grating Sensor)

  • 구본용;류치영;홍창선
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2000년도 춘계학술발표대회 논문집
    • /
    • pp.163-166
    • /
    • 2000
  • Fiber Bra99 grating (FBG) sensor, one of the fiber optic sensor (FOS) offers lots of advantages for structural health monitoring due to its multiplexing capability. Also, it is proper to measure the structural vibration with no mass concentration effect. In this paper, we constructed two sensor arrays composed of 9 FBG sensors for the vibration and mode sensing of a composites beam. For an accurate measurement of wavelength shift, a signal processing board with an electric circuit based on time-interval counting was developed. This sensor system showed a good resolution of dynamic strain (<10${\mu}{\varepsilon}$). Using this sensor system, dynamic strains at 9 points of composite beam was measured and strain measured mode shape of the beam was calculated from the acquired strains and compared with numerical results by ABAQUS.

  • PDF

Signal Processing Techniques Based on Adaptive Radial Basis Function Networks for Chemical Sensor Arrays

  • Byun, Hyung-Gi
    • 센서학회지
    • /
    • 제25권3호
    • /
    • pp.161-172
    • /
    • 2016
  • The use of a chemical sensor array can help discriminate between chemicals when comparing one sample with another. The ability to classify pattern characteristics from relatively small pieces of information has led to growing interest in methods of sensor recognition. A variety of pattern recognition algorithms, including the adaptive radial basis function network (RBFN), may be applicable to gas and/ or odor classification. In this paper, we provide a broad review of approaches for various types of gas and/or odor identification techniques based on RBFN and drift compensation techniques caused by sensor poisoning and aging.

지능형 후각센서 (Intelligent Olfactory Sensor)

  • 이대식;안창근;김봉규;표현봉;김진태;허철;김승환
    • 전자통신동향분석
    • /
    • 제34권4호
    • /
    • pp.76-88
    • /
    • 2019
  • With advances in olfactory sensor technologies, the number of reports on various intelligent applications using multiple sensors (sensor arrays) are continuously increasing for fields such as medicine, environment, security, etc. For intelligent and point-of-care applications, it is not only important for the sensor technology to perform chemical or physical measurements rapidly and accurately, but it is also important for artificial intelligence technology to recognize and quantify specific chemicals or diagnose diseases such as lung cancer and diabetes. In particular, great advances in pattern recognition technologies, including deep learning algorithms, as well as sensor array technologies, are expected to enhance the potential of various types of olfactory intelligence applications, including early cancer diagnosis, drug seeking, military operations, and air pollution monitoring.

수중 이동체의 전기장 신호 기반 위치추정을 위한 수중 전기장 배열센서의 전극 부설 위치 오차 보정 방법 (Calibrating Electrode Misplacement in Underwater Electric Field Sensor Arrays for the Electric Field-Based Localization of Underwater Vessels)

  • 김재선;이인규;배기웅;유선철
    • 센서학회지
    • /
    • 제31권5호
    • /
    • pp.330-336
    • /
    • 2022
  • This paper proposes a method to calibrate the electrode misplacement in underwater electric field sensor arrays (EFSAs) for accurate measurements of underwater electric field signatures. The electrode misplacement of an EFSA was estimated by measuring the electric field signatures generated by a known electric source and by comparing the measurements with the theoretical calculations under similar measurement conditions. When the EFSA measured the electric field signatures induced by an unknown electric source, the electric properties of the unknown electric source were approximated by considering the optimized estimation of the electrode misplacement of the EFSA. Finally, the measured electric field signatures were calibrated by calculating the theoretical electric field signatures to be measured with an ideally installed EFSA without electrode misplacement; the approximated electric properties of the unknown electric source were also taken into account. Simulations were conducted to test the proposed calibration method. The results showed that the electrode misplacement could be estimated. Further, the electric field measurements and the electric field-based localization of underwater vessels became more accurate after the application of the proposed calibration method. The proposed method will contribute to applications such as the detection and localization of underwater electric sources, which require accurate measurements of underwater electric field signatures.

Performance Improvement of a Modified Perturbation Method via a Least Square Approach for Sensor Arrays

  • Chang, Byong-Kun
    • The Journal of the Acoustical Society of Korea
    • /
    • 제18권4E호
    • /
    • pp.37-42
    • /
    • 1999
  • This paper concerns a modified perturbation method and a least square approach to synthesize an optimum beam pattern of a thinned sensor array with respect to element spacing. In the modified perturbation, the antenna spacing is perturbed iteratively such that the sidelobes are equalized via a linear programming approach. The least square approach is proposed to improve the array performance for the thinned array using the fact that the number of sidelobes is more than the number of element spacings. It is demonstrated that the least square approach performs better than the modified perturbation method.

  • PDF