• 제목/요약/키워드: Sensor Precision

검색결과 1,643건 처리시간 0.029초

A Electrical Fire Disaster Prevention Device of High Speed and High Precision by using Semiconductor Switching Devices (반도체 스위칭 소자를 이용한 고속 고정밀의 전기화재 방재장치)

  • Kwak, Dong-Kurl
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • 제14권5호
    • /
    • pp.423-430
    • /
    • 2009
  • Recently as the inactive response characteristics of the existing RCD used on low voltage power distribution system, so control of overload and electric short circuit faults, major causes of electrical fires, are not enough. Therefore, this paper confirms the unreliability of the existing RCD by electrical fault simulator and proposes a EFDPD by using semiconductor switching devices and a high precision current sensor (namely, reed switch) for the prevention of electrical disasters in low voltage power distribution system caused by overload or electric short circuit faults. The sensitive reed switch in the proposed EFDPD exactly detects the increased magnetic flux with the overload or the short current caused by a number of electrical faults, and the following, the self circuit breaker in EFDPD rapidly cuts off the system. The proposed EFDPD confirms the excellent characteristics in response velocity and accuracy in comparison with the conventional circuit breaker through various operation performance analysis. The proposed EFDPD can also prevent electrical disasters, like as electrical fires, which resulted from the malfunction and inactive response characteristics of the existing RCD.

A Study on Filament Winding Tension Control using a fuzzy-PID Algorithm (퍼지-PID 알고리즘을 이용한 필라멘트 와인딩 장력제어에 관한 연구)

  • 이승호;이용재;오재윤
    • Journal of the Korean Society for Precision Engineering
    • /
    • 제21권3호
    • /
    • pp.30-37
    • /
    • 2004
  • This thesis develops a fuzzy-PID control algorithm for control the filament winding tension. It is developed by applying classical PID control technique to a fuzzy logic controller. It is composed of a fuzzy-PI controller and a fuzzy-D controller. The fuzzy-PI controller uses error and integrated error as inputs, and the fuzzy-D controller uses derivative of error as input. The fuzzy-PI controller uses Takagi-Sugeno fuzzy inference system, and the fuzzy-D controller uses Mamdani fuzzy inference system. The fuzzy rule base for the fuzzy-PI controller is designed using 19 rules, and the fuzzy rule base for the fuzzy-D controller is designed using 5 rules. A test-bed is set-up for verifying the effectiveness of the developing control algorithm in control the filament winding tension. It is composed of a mandrel, a carriage, a force sensor, a driving roller, nip rollers, a creel, and a real-time control system. Nip rollers apply a vertical force to a filament, and the driving roller drives it. The real-time control system is developed by using MATLAB/xPC Target. First, experiments for showing the inherent problems of an open-loop control scheme in a filament winding are performed. Then, experiments for showing the robustness of the developing fuzzy-PID control algorithm are performed under various working conditions occurring in a filament winding such as mandrel rotating speed change, carriage traversing, spool radius change, and reference input change.

Performance of AMI-CORBA for Field Robot Application

  • Syahroni Nanang;Choi Jae-Weon
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 한국정밀공학회 2005년도 추계학술대회 논문집
    • /
    • pp.384-389
    • /
    • 2005
  • The objective on this project is to develop a cooperative Field Robot (FR), by using a customize Open Control Platform (OCP) as design and development process. An OCP is a CORBA-based solution for networked control system, which facilitates the transitioning of control designs to embedded targets. In order to achieve the cooperation surveillance system, two FRs are distributed by navigation messages (GPS and sensor data) using CORBA event-channel communication, while graphical information from IR night vision camera is distributed using CORBA Asynchronous Method Invocation (AMI). The QoS features of AMI in the network are to provide the additional delivery method for distributing an IR camera Images will be evaluate in this experiment. In this paper also presents an empirical performance evaluation from the variable chunk sizes were compared with the number of clients and message latency, some of the measurement data's are summarized in the following paragraph. In the AMI buffers size measurement, when the chuck sizes were change, the message latency is significantly change according to it frame size. The smaller frame size between 256 bytes to 512 bytes is more efficient fur the message size below 2Mbytes, but it average performance in the large of message size a bigger frame size is more efficient. For the several destination, the same experiment using 512 bytes to 2 Mbytes frame with 2 to 5 destinations are presented. For the message size bigger than 2Mbytes, the AMI are still able to meet requirement far more than 5 clients simultaneously.

  • PDF

Digitization Impact on the Spaceborne Synthetic Aperture Radar Digital Receiver Analysis (위성탑재 영상레이다 디지털 수신기에서의 양자화 영향성 분석)

  • Lim, Sungjae;Lee, Hyonik;Sung, Jinbong;Kim, Seyoung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • 제49권11호
    • /
    • pp.933-940
    • /
    • 2021
  • The space-borne SAR(Synthetic Aperture Radar) system radiates the microwave signal and receives the backscattered signal. The received signal is converted to digital at the Digital Receiver, which is implemented at the end of the SAR sensor receiving chain. The converted signal is formated after signal processing such as filtering and data compression. Two quantization are conducted in the Digital Receiver. One quantization is an analog to digital conversion at ADC(Analog-Digital Converter). Another quantization is the BAQ(Block Adaptive Quantization) for data compression. The quantization process is a conversion from a continuous or higher bit precision to a discrete or lower bit precision. As a result, a quantization noise is inevitably occurred. In this paper, the impact of two quantization processes are analyzed in a view of SNR degradation.

Development of Diagnosis System of Mold Oscillation in a Continuous Slab Casting Machine (연속 주조기의 주형 진동 진단 시스템의 개발)

  • Choi, Jae-Chan;Lee, Sung-Jin;Cho, Kang-Hyeong;Jun, Hyeong-Il
    • Journal of the Korean Society for Precision Engineering
    • /
    • 제13권5호
    • /
    • pp.84-94
    • /
    • 1996
  • In order to prevent shell sticking by providing sufficient lubrication between the strand and the mold, the mold oscillation has been used. Now it is well known that the shape of the oscillation curve has a decisive effect on the surface quality of the cast product. Besides, oscillation parameters such as stroke and frequency are also very important. In order to guarantee that parameters which have been found to be optimal for a certain grade of steel do not change with time, periodical checks of the physical condition of the whole equipment are necessary. The portable mold oscillation analyzer with integrated computer, developed by POSCO, records the movement of the mold in every spatial direction. The system uses the gap sensors to measure the mold movement (displacement ) in the two horizontal directions according to the mold narrow and broad faces and the vertical strokes in the four corners of mold. The gap sensor is a non-contacting minute displacement measuring device using the principle of high frequency eddy current loss. The mold oscillation diagnosis system integrates the gap sensors, their converters and the industrial portable computer with plug-in data acquisition boards. The all programs, such as the fast Fourier transformation module (amplitude and phase spectrums) and harmonic analysis module, was coded by LabVIEW$^{TM}$ software as the graphical language. In an own 'expert module' which is included in the diagnosis program, one can obtain much information about the mold oscillation equipment.

  • PDF

Research of the Delivery Autonomy and Vision-based Landing Algorithm for Last-Mile Service using a UAV (무인기를 이용한 Last-Mile 서비스를 위한 배송 자동화 및 영상기반 착륙 알고리즘 연구)

  • Hanseob Lee;Hoon Jung
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • 제46권2호
    • /
    • pp.160-167
    • /
    • 2023
  • This study focuses on the development of a Last-Mile delivery service using unmanned vehicles to deliver goods directly to the end consumer utilizing drones to perform autonomous delivery missions and an image-based precision landing algorithm for handoff to a robot in an intermediate facility. As the logistics market continues to grow rapidly, parcel volumes increase exponentially each year. However, due to low delivery fees, the workload of delivery personnel is increasing, resulting in a decrease in the quality of delivery services. To address this issue, the research team conducted a study on a Last-Mile delivery service using unmanned vehicles and conducted research on the necessary technologies for drone-based goods transportation in this paper. The flight scenario begins with the drone carrying the goods from a pickup location to the rooftop of a building where the final delivery destination is located. There is a handoff facility on the rooftop of the building, and a marker on the roof must be accurately landed upon. The mission is complete once the goods are delivered and the drone returns to its original location. The research team developed a mission planning algorithm to perform the above scenario automatically and constructed an algorithm to recognize the marker through a camera sensor and achieve a precision landing. The performance of the developed system has been verified through multiple trial operations within ETRI.

Analysis of detected anomalies in VOC reduction facilities using deep learning

  • Min-Ji Son;Myung Ho Kim
    • Journal of the Korea Society of Computer and Information
    • /
    • 제28권4호
    • /
    • pp.13-20
    • /
    • 2023
  • In this paper, the actual data of VOC reduction facilities was analyzed through a model that detects and predicts data anomalies. Using the USAD model, which shows stable performance in the field of anomaly detection, anomalies in real-time data are detected and sensors that cause anomalies are searched. In addition, we propose a method of predicting and warning, when abnormalities that time will occur by predicting future outliers with an auto-regressive model. The experiment was conducted with the actual data of the VOC reduction facility, and the anomaly detection test results showed high detection rates with precision, recall, and F1-score of 98.54%, 89.08%, and 93.57%, respectively. As a result, averaging of the precision, recall, and F1-score for 8 sensors of detection rates were 99.64%, 99.37%, and 99.63%. In addition, the Hamming loss obtained to confirm the validity of the detection experiment for each sensor was 0.0058, showing stable performance. And the abnormal prediction test result showed stable performance with an average absolute error of 0.0902.

Yield monitoring systems for non-grain crops: A review

  • Md Sazzadul Kabir;Md Ashrafuzzaman Gulandaz;Mohammod Ali;Md Nasim Reza;Md Shaha Nur Kabir;Sun-Ok Chung;Kwangmin Han
    • Korean Journal of Agricultural Science
    • /
    • 제51권1호
    • /
    • pp.63-77
    • /
    • 2024
  • Yield monitoring systems have become integral to precision agriculture, providing insights into the spatial variability of crop yield and playing an important role in modern harvesting technology. This paper aims to review current research trends in yield monitoring systems, specifically designed for non-grain crops, including cabbages, radishes, potatoes, and tomatoes. A systematic literature survey was conducted to evaluate the performance of various monitoring methods for non-grain crop yields. This study also assesses both mass- and volume-based yield monitoring systems to provide precise evaluations of agricultural productivity. Integrating load cell technology enables precise mass flow rate measurements and cumulative weighing, offering an accurate representation of crop yields, and the incorporation of image-based analysis enhances the overall system accuracy by facilitating volumetric flow rate calculations and refined volume estimations. Mass flow methods, including weighing, force impact, and radiometric approaches, have demonstrated impressive results, with some measurement error levels below 5%. Volume flow methods, including paddle wheel and optical methodologies, yielded error levels below 3%. Signal processing and correction measures also play a crucial role in achieving accurate yield estimations. Moreover, the selection of sensing approach, sensor layout, and mounting significantly influence the performance of monitoring systems for specific crops.

Microfluidic Immuno-Sensor Chip using Electrical Detection System (전기 검출 시스템을 이용한 Microfluidic Immuno-Sensor Chip)

  • Maeng, Joon-Ho;Lee, Byung-Chul;Cho, Chul-Ho;Ko, Yong-Jun;Ahn, Yoo-Min;Cho, Nahm-Gyoo;Lee, Seoung-Hwan;Hwang, Seung-Yong
    • KSBB Journal
    • /
    • 제21권5호
    • /
    • pp.325-330
    • /
    • 2006
  • This study presents the characterization of an integrated portable microfluidic electrical detection system for fast and low volume immunoassay using polystyrene microbead, which are used as immobilization surfaces. In our chip, a filtration method using the microbead was adopted for sample immobilization and immunogold silver staining(IGSS) was used to increase the electrical signal. The chip is composed of an inexpensive and biocompatible Polydimethylsiloxane(PDMS) layer and Pyrex glass substrate. Platinum microelectrodes for electric signal detection were fabricated on the substrate and microchannel and pillar-type microfilters were formed in the PDMS layer. With a fabricated chip, we reacted antigen and antibody according to the procedures. Then, silver enhancer was injected to increase the size of nanogold particles tagged with the second antibody. As a result, microbeads were connected to each other and formed an electrical bridge between microelectrodes. Resistance measured through the electrodes showed a difference of two orders of magnitude between specific and nonspecific immuno-reactions. The detection limit was 10 ng/ml. The developed immunoassay chip reduced the total analysis time from 3 hours to 50 min. Fast and low-volume biochemical analysis has been successfully achieved with the developed microfilter and immuno-sensor chip, which is integrated to the microfluidic system.

Imaging Performance Analysis of an EO/IR Dual Band Airborne Camera

  • Lee, Jun-Ho;Jung, Yong-Suk;Ryoo, Seung-Yeol;Kim, Young-Ju;Park, Byong-Ug;Kim, Hyun-Jung;Youn, Sung-Kie;Park, Kwang-Woo;Lee, Haeng-Bok
    • Journal of the Optical Society of Korea
    • /
    • 제15권2호
    • /
    • pp.174-181
    • /
    • 2011
  • An airborne sensor is developed for remote sensing on an aerial vehicle (UV). The sensor is an optical payload for an eletro-optical/infrared (EO/IR) dual band camera that combines visible and IR imaging capabilities in a compact and lightweight package. It adopts a Ritchey-Chr$\'{e}$tien telescope for the common front end optics with several relay optics that divide and deliver EO and IR bands to a charge-coupled-device (CCD) and an IR detector, respectively. The EO/IR camera for dual bands is mounted on a two-axis gimbal that provides stabilized imaging and precision pointing in both the along and cross-track directions. We first investigate the mechanical deformations, displacements and stress of the EO/IR camera through finite element analysis (FEA) for five cases: three gravitational effects and two thermal conditions. For investigating gravitational effects, one gravitational acceleration (1 g) is given along each of the +x, +y and +z directions. The two thermal conditions are the overall temperature change to $30^{\circ}C$ from $20^{\circ}C$ and the temperature gradient across the primary mirror pupil from $-5^{\circ}C$ to $+5^{\circ}C$. Optical performance, represented by the modulation transfer function (MTF), is then predicted by integrating the FEA results into optics design/analysis software. This analysis shows the IR channel can sustain imaging performance as good as designed, i.e., MTF 38% at 13 line-pairs-per-mm (lpm), with refocus capability. Similarly, the EO channel can keep the designed performance (MTF 73% at 27.3 lpm) except in the case of the overall temperature change, in which the EO channel experiences slight performance degradation (MTF 16% drop) for $20^{\circ}C$ overall temperate change.