• Title/Summary/Keyword: Sensor Position Location

Search Result 306, Processing Time 0.029 seconds

Localization of Unmanned Ground Vehicle using 3D Registration of DSM and Multiview Range Images: Application in Virtual Environment (DSM과 다시점 거리영상의 3차원 등록을 이용한 무인이동차량의 위치 추정: 가상환경에서의 적용)

  • Park, Soon-Yong;Choi, Sung-In;Jang, Jae-Seok;Jung, Soon-Ki;Kim, Jun;Chae, Jeong-Sook
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.15 no.7
    • /
    • pp.700-710
    • /
    • 2009
  • A computer vision technique of estimating the location of an unmanned ground vehicle is proposed. Identifying the location of the unmaned vehicle is very important task for automatic navigation of the vehicle. Conventional positioning sensors may fail to work properly in some real situations due to internal and external interferences. Given a DSM(Digital Surface Map), location of the vehicle can be estimated by the registration of the DSM and multiview range images obtained at the vehicle. Registration of the DSM and range images yields the 3D transformation from the coordinates of the range sensor to the reference coordinates of the DSM. To estimate the vehicle position, we first register a range image to the DSM coarsely and then refine the result. For coarse registration, we employ a fast random sample matching method. After the initial position is estimated and refined, all subsequent range images are registered by applying a pair-wise registration technique between range images. To reduce the accumulation error of pair-wise registration, we periodically refine the registration between range images and the DSM. Virtual environment is established to perform several experiments using a virtual vehicle. Range images are created based on the DSM by modeling a real 3D sensor. The vehicle moves along three different path while acquiring range images. Experimental results show that registration error is about under 1.3m in average.

A Study on step number detection using smartphone sensors for position tracking (위치 추적을 위한 스마트폰 센서를 이용한 걸음 수 검출에 관한 연구)

  • Lee, Kwonhee;Kim, Kwanghyun;Oh, Jongtaek
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.18 no.3
    • /
    • pp.119-125
    • /
    • 2018
  • Various techniques for indoor positioning using a smart phone have been studied. Among them, the positioning technology using the acceleration sensor and the gyro sensor built in the smartphone is widely used in conjunction with the WiFi fingerprint technology. The location tracking technology using sensors has been used for a long time, but the performance environment of the smartphone is poor and the user is moving with the smartphone in a certain posture. Therefore, in order to improve the accuracy of location tracking in a smartphone environment, it is necessary to study and develop appropriate algorithms in a mobile environment. In this paper, we analyze the performances of frequency analysis method, maximum sum of minimum acceleration method and adaptive threshold method, which are the user's moving step count detection algorithms, and determine the most accurate method.

Remote Navigation and Monitoring System for Mobile Robot Using Smart Phone (스마트 폰을 이용한 모바일로봇의 리모트 주행제어 시스템)

  • Park, Jong-Jin;Choi, Gyoo-Seok;Chun, Chang-Hee;Park, In-Ku;Kang, Jeong-Jin
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.11 no.6
    • /
    • pp.207-214
    • /
    • 2011
  • In this paper, using Zigbee-based wireless sensor networks and Lego MindStorms NXT robot, a remote monitoring and navigation system for mobile robot has been developed. Mobile robot can estimate its position using encoder values of its motor, but due to the existing friction and shortage of motor power etc., error occurs. To fix this problem and obtain more accurate position of mobile robot, a ultrasound module on wireless sensor networks has been used in this paper. To overcome disadvantages of ultrasound which include straightforwardness and narrow detection coverage, we rotate moving node attached to mobile robot by $360^{\circ}$ to measure each distance from four fixed nodes. Then location of mobile robot is estimated by triangulation using measured distance values. In addition, images are sent via a network using a USB Web camera to smart phone. On smart phones we can see location of robot, and images around places where robot navigates. And remote monitoring and navigation is possible by just clicking points at the map on smart phones.

Developing for Embedded-based Multidimensional Location Information Data Extraction and Storage system (임베디드 기반의 다차원 위치정보 추출 및 저장시스템 개발)

  • Seong, Ki-Taek
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.10
    • /
    • pp.2586-2592
    • /
    • 2014
  • Lost fishing gears become a major cause of marine pollution, and many policy and technical efforts have been conducted for that. For efficient retrieving lost fishing gears in underwater, It is important to know the current position. Using GPS in the sub-sea environment is impossible and localization requires the use of special systems, and mobility due to water currents for underwater localization also has to be considered. In this paper, described with respect to the system for a self-generated location informations without using an external signal, such as a GPS and Sonar and storing them. Using the characteristics of the geomagnetic and INS principle, proposed informations and a way for estimating self position during movement. Embedded based system suggested and implemented in this study is tested for validating it's functionality.

Development of a SLAM System for Small UAVs in Indoor Environments using Gaussian Processes (가우시안 프로세스를 이용한 실내 환경에서 소형무인기에 적합한 SLAM 시스템 개발)

  • Jeon, Young-San;Choi, Jongeun;Lee, Jeong Oog
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.20 no.11
    • /
    • pp.1098-1102
    • /
    • 2014
  • Localization of aerial vehicles and map building of flight environments are key technologies for the autonomous flight of small UAVs. In outdoor environments, an unmanned aircraft can easily use a GPS (Global Positioning System) for its localization with acceptable accuracy. However, as the GPS is not available for use in indoor environments, the development of a SLAM (Simultaneous Localization and Mapping) system that is suitable for small UAVs is therefore needed. In this paper, we suggest a vision-based SLAM system that uses vision sensors and an AHRS (Attitude Heading Reference System) sensor. Feature points in images captured from the vision sensor are obtained by using GPU (Graphics Process Unit) based SIFT (Scale-invariant Feature Transform) algorithm. Those feature points are then combined with attitude information obtained from the AHRS to estimate the position of the small UAV. Based on the location information and color distribution, a Gaussian process model is generated, which could be a map. The experimental results show that the position of a small unmanned aircraft is estimated properly and the map of the environment is constructed by using the proposed method. Finally, the reliability of the proposed method is verified by comparing the difference between the estimated values and the actual values.

A Forward Link ADA Positioning method for mobile Robots (이동 로봇을 위한 순방향 링크 AOA 측위 방법)

  • Kim, Dong-Hyouk;Song, Seung-Hun;Roh, Gi-Hong;Sung, Tae-Kyung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.6
    • /
    • pp.603-608
    • /
    • 2007
  • In the conventional AOA(angle-of-arrival) positioning utilizing reverse-link wireless channel, each sensor should be equipped with an array antenna to measure the incident angle of signal transmitting from a tag. To perform the complicated signal processing for angle measurements, sensor size and its power consumption will be large. In some applications like mobile robot location, there exists no strict restriction in tag size or in power consumption. Rather, it is desirable that the sensor would be as small as possible. This paper presents a new AOA positioning method utilizing forward-link channel. Under the assumption that the mobile robot is operating on the flat surface, the measurement model for FLAOA(tiJrward-link AOA) is derived first. Two kinds of position estimation algorithms using FLAOA measurements are proposed; Gauss-Newton method and closed-fonn solution method. With the proposed methods, we can ohtain the attitude of robot as well as its position. Positioning performance of proposed methods is compared by computer simulation. Simulation results show that the closed-form solution method using FLAOA measurements is suitable for indoor robot positioning.

Impact location on a stiffened composite panel using improved linear array

  • Zhong, Yongteng;Xiang, Jiawei
    • Smart Structures and Systems
    • /
    • v.24 no.2
    • /
    • pp.173-182
    • /
    • 2019
  • Due to the degradation of beamforming properties at angles close to $0^{\circ}$ to $180^{\circ}$, linear array does not have a complete $180^{\circ}$ inspection range but a smaller one. This paper develops a improved sensor array with two additional sensors above and below the linear sensor array, and presents time difference and two dimensional multiple signal classification (2D-MUSIC) based impact localization for omni-directional localization on composite structures. Firstly, the arrival times of impact signal observed by two additional sensors are determined using the wavelet transform and compared, and the direction range of impact source can be decided in general, $0^{\circ}$ to $180^{\circ}$ or $180^{\circ}$ to $360^{\circ}$. And then, 2D-MUSIC based spatial spectrum formula using uniform linear array is applied for locate accurate position of impact source. When the arrival time of impact signal observed by two additional sensors is equal, the direction of impact source can be located at $0^{\circ}$ or $180^{\circ}$ by comparing the first and last sensor of linear array. And then the distance is estimated by time difference algorithm. To verify the proposed approach, it is applied to a quasi-isotropic epoxy laminate plate and a stiffened composite panel. The results are in good agreement with the actual impact occurring position.

Design and Implementation of Physical Computing Education Content based on Augmented Reality

  • Kim, So-Young;Jung, Eunmi;Kim, Heesun
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.14 no.4
    • /
    • pp.198-205
    • /
    • 2022
  • Along with a variety of coding education, physical computing education for controlling various sensors is being actively conducted for elementary, middle, and high school students in line with the era of the fourth industrial revolution. A problem with physical computing education using Arduino is pin connection errors between Arduino and various sensors. Most of the students who come into contact with the Arduino for the first time often do not know the purpose of the Arduino pin and the connection position of the pin. Also, hardware built with incorrect pin connections to the Arduino board often does not work properly. If this case continues, students will lose interest in coding education. Therefore, in this paper, we implemented an augmented reality application that informs the connection process of the Arduino board and the sensor during physical computing coding education using Arduino, and designed and implemented educational content for the Arduino pin position and connection process. First, we explain the role of the Arduino board and the sensor and the location of the pins. After that, the students run the educational augmented reality educational content using their smartphones and check the correct pin connection process between the Arduino and the sensor. In the physical computing education, augmented reality content is used to increase the understanding and immersion of the class. It is expected that the educational effect will also increase by inducing fun and interest in physical computing coding education.

An Efficient Local Map Building Scheme based on Data Fusion via V2V Communications

  • Yoo, Seung-Ho;Choi, Yoon-Ho;Seo, Seung-Woo
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.2 no.2
    • /
    • pp.45-56
    • /
    • 2013
  • The precise identification of vehicle positions, known as the vehicle localization problem, is an important requirement for building intelligent vehicle ad-hoc networks (VANETs). To solve this problem, two categories of solutions are proposed: stand-alone and data fusion approaches. Compared to stand-alone approaches, which use single information including the global positioning system (GPS) and sensor-based navigation systems with differential corrections, data fusion approaches analyze the position information of several vehicles from GPS and sensor-based navigation systems, etc. Therefore, data fusion approaches show high accuracy. With the position information on a set of vehicles in the preprocessing stage, data fusion approaches is used to estimate the precise vehicular location in the local map building stage. This paper proposes an efficient local map building scheme, which increases the accuracy of the estimated vehicle positions via V2V communications. Even under the low ratio of vehicles with communication modules on the road, the proposed local map building scheme showed high accuracy when estimating the vehicle positions. From the experimental results based on the parameters of the practical vehicular environments, the accuracy of the proposed localization system approached the single lane-level.

  • PDF

Design of Stroke Measurement System and Cylinder-type Capactive Sensor (실린더형 정전용량 센서 및 변위 측정시스템 설계)

  • Lee, Jae-gun;Lee, In-gon;Park, Sung-kyun;Hong, Ic-pyo
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2015.10a
    • /
    • pp.910-912
    • /
    • 2015
  • In this paper, we designed the novel capacitive sensor and system for measuring the position of the piston in hydraulic cylinder. The magnetic or LVDT sensors have been widely used to measure the position of the piston because of its high accuracy, but these types of sensor are very expensive and have difficulty in use because of its complexity. To overcome these disadvantages, we studied the optimized non-contact capacitive sensor and designed detecting system for accurate measuring the location of piston in hydraulic cylinder. The proposed capacitive sensor and detecting system have the possibility of practical use for hydraulic cylinder through experiments.

  • PDF