• Title/Summary/Keyword: Sensor Output Simulation

Search Result 209, Processing Time 0.022 seconds

Estimation of State-of-charge and Sensor Fault Detection of a Lithium-ion Battery in Electric Vehicles (전기자동차용 리튬이온전지를 위한 SOC 추정 및 센서 고장검출)

  • Han, Man-You;Lee, Kee-Sang
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.8
    • /
    • pp.1085-1091
    • /
    • 2014
  • A model based SOC estimation scheme using parameter identification is described and applied to a Lithium-ion battery module that can be installed in electric vehicles. Simulation studies are performed to verify the effect of sensor faults on the SOC estimation results for terminal voltage sensor and load current sensor. The sensor faults should be detected and isolated as soon as possible because the SOC estimation error due to any sensor fault seriously affects the overall performance of the BMS. A new fault detection and isolation(FDI) scheme by which the fault of terminal voltage sensor and load current sensor can be detected and isolated is proposed to improve the reliability of the BMS. The proposed FDI scheme utilizes the parameter estimation of an input-output model and two fuzzy predictors for residual generation; one for terminal voltage and the other for load current. Recently developed dual polarization(DP) model is taken to develope and evaluate the performance of the proposed FDI scheme. Simulation results show the practical feasibility of the proposed FDI scheme.

Low-Voltage Current-Sensing CMOS Interface Circuit for Piezo-Resistive Pressure Sensor

  • Thanachayanont, Apinunt;Sangtong, Suttisak
    • ETRI Journal
    • /
    • v.29 no.1
    • /
    • pp.70-78
    • /
    • 2007
  • A new low-voltage CMOS interface circuit with digital output for piezo-resistive transducer is proposed. An input current sensing configuration is used to detect change in piezo-resistance due to applied pressure and to allow low-voltage circuit operation. A simple 1-bit first-order delta-sigma modulator is used to produce an output digital bitstream. The proposed interface circuit is realized in a 0.35 ${\mu}m$ CMOS technology and draws less than 200 ${\mu}A$ from a single 1.5 V power supply voltage. Simulation results show that the circuit can achieve an equivalent output resolution of 9.67 bits with less than 0.23% non-linearity error.

  • PDF

Simulation of Spacecraft Attitude Measurement Data by Modeling Physical Characteristics of Dynamics and Sensors

  • Lee, Hun-Gu;Yoon, Jae-Cheol;Cheon, Yee-Jin;Shin, Dong-Seok;Lee, Hyun-Jae;Lee, Young-Ran;Bang, Hyo-Choong;Lee, Sang-Ryool
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.1966-1971
    • /
    • 2004
  • As the remote sensing satellite technology grows, the acquisition of accurate attitude and position information of the satellite has become more and more important. Due to the data processing limitation of the on-board orbit propagator and attitude determination algorithm, it is required to develop much more accurate orbit and attitude determination, which are so called POD (precision orbit determination) and PAD (precision attitude determination) techniques. The sensor and attitude dynamics simulation takes a great part in developing a PAD algorithm for two reasons: 1. when a PAD algorithm is developed before the launch, realistic sensor data are not available, and 2. reference attitude data are necessary for the performance verification of a PAD algorithm. A realistic attitude dynamics and sensor (IRU and star tracker) outputs simulation considering their physical characteristics are presented in this paper, which is planned to be used for a PAD algorithm development, test and performance verification.

  • PDF

The Improvement Method of ARS Attitude depeding on Dynamic Conditions (기동특성에 따른 ARS 자세 성능향상 기법)

  • Park, Chan-Ju;Lee, Sang-Jeong
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.11 no.6
    • /
    • pp.30-37
    • /
    • 2008
  • The ARS(Attitude Reference System) calculates an attitude of a vehicle using inertial angular rate sensors and acceleration sensors. The attitude error of ARS increases due to the integration of angular rate sensor output. To reduce the attitude error an acceleration of sensor is used similar to leveling method of INS(Inertial Navigation System). When an acceleration of vehicle is increased, it is difficult to calculate the attitude error using acceleration sensor output. In this paper the estimation method of acceleration due to the attitude error only is proposed. Two methods of the attitude calculation depending on vehicle dynamics and the integration method of these two methods are proposed. To verify its performance the monte carlo simulation is performed and shows that it bounds attitude error of ARS to reasonable level.

Robust Model Based Fault Detection of EPB System for Varying Temperature (온도변화에 강인한 EPB 시스템의 모델기반 고장검출 방법)

  • Moon, Byoung-Joon;Park, Chong-Kug
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.17 no.5
    • /
    • pp.26-30
    • /
    • 2009
  • In this paper, a robust model based fault detection for varying temperature is proposed, To develop a robust force estimation model, it needs temperature information because the force sensor's output is affected by a temperature variation. If an EPB system does not include a temperature sensor, the model has a much larger error than an EPB system with a built-in temperature sensor. Therefore, the temperature is estimated by using Ohm's law. The force model is applied with a motor current, battery voltage, operation mode, and the estimated temperature to detect a force sensor's abnormal signal fault. The residual is calculated by comparing the value of the measured force and the estimated force. Fault information is collected by using the output of the evaluated residual with the adaptive thresholds. A proposed robust model based fault detection for varying temperature was verified by HILS (Hardware in the Loop Simulation).

Finite Element Analysis of Capacitive pressure sensor with Touch mode for improving non-linearity (비선형성의 개선을 위한 Capacitive pressure sensor의 Touch mode 방식에 대한 유한요소 해석)

  • Kim, Do-Hyung;O, Jea-Geun;Choi, Bum-Kyoo
    • Proceedings of the KIEE Conference
    • /
    • 2004.07c
    • /
    • pp.2087-2089
    • /
    • 2004
  • Capacitive pressure sensor는 Piezo type sensor에 비해 온도의 영향이 적어 공업계측, 전기용품 등 그 용도가 다양하여 폭넓게 사용되어지고 있지만, 측정값의 비선형성이 존재하여 측정값에 대한 신뢰도가 떨어지는 단점이 있다. 본 연구에서는 기존 capacitive pressure sensor의 비선형적 output을 개선하기 위한 방법으로 touch mode capacitive pressure sensor를 제안하였다. 또한, 실제 Device제작에 앞서 FEM 해석을 수행하였다. 2mm X 2mm 크기의 diaphragm, $25{\mu}m$의 두께, $20{\mu}m$의 gap을 갖는 Sensor를 Simulation하였으며 설계 변수를 추출하여 각각의 설계변수에 대한 해석을 실시하였다. 그 결과 15.2psi${\sim}$31psi의 영역에서 8.58pF${\sim}$54.31pF의 capacitance가 선형적으로 나타나는 sensor임을 확인하였다.

  • PDF

Properties of Non-dispersive infrared Ethanol Gas Sensors according to the Irradiation Energy

  • Kim, JinHo;Yi, SeungHwan
    • Journal of Sensor Science and Technology
    • /
    • v.26 no.3
    • /
    • pp.168-172
    • /
    • 2017
  • A nondispersive infrared (NDIR) ethanol gas sensor was prototyped with ASIC implemented thermopile sensor, which included a temperature sensor and two ellipsoidal waveguide structures. The temperature dependency of the two ethanol sensors (with partially blocked and intact structures) has been characterized. The two ethanol gas sensors showed linear output voltages initially when varying the ambient temperature from 253 K to 333 K. The slope of the temperature sensor presented a constant value of 15 mV/K. After temperature compensation, the ethanol gas sensor estimated ethanol concentrations with larger errors of 20 to 25% below 200 ppm. However, the estimation errors were reduced to between -10 and +1 % from 253 K to 333 K above 200 ppm ethanol gas concentration in this research.

Frequency Response Compensation Technique for Capacitive Microresonator (용량형 마이크로 공진기의 주파수 응답 보상 기법)

  • Seo, Jin-Deok;Lim, Kyo-Muk;Ko, Hyoung-Ho
    • Journal of Sensor Science and Technology
    • /
    • v.21 no.3
    • /
    • pp.235-239
    • /
    • 2012
  • This paper presents frequency response compensation technique, and a self-oscillation circuit for capacitive microresonator with the compensation technique using programmable capacitor array, to compensate for the frequency response distorted by parasitic capacitances, and to obtain stable oscillation condition. The parasitic capacitances between the actuation input port and capacitive output port distort the frequency response of the microresonator. The distorted non-ideal frequency response can be compensated using two programmable capacitor arrays, which are connected between anti-phased actuation input port and capacitive output port. The simulation model includes the whole microresonator system, which consists of mechanical structure, transimpedance amplifier with automatic gain control, actuation driver and compensation circuit. The compensation operation and oscillation output of the system is verified with the simulation results.

Pupil plane wavefront sensing with a static pyramidal prism: Simulation and preliminary evaluation

  • Lee, Jun-Ho;Doel, A.P.;Walker, D.D.
    • Journal of the Optical Society of Korea
    • /
    • v.4 no.1
    • /
    • pp.1-6
    • /
    • 2000
  • Adaptive optics(AO) removes or compensates the distortion caused by a turbulent atmosphere or medium. A wavefront sensormeasures the distortion, on which the correction of AO is based. A new idea of pupil plane wavefront sensing, which consists of a relay lens and a pyramidal-shaped prism, was previously proposed. This paper reviews the idea of pupil wavefrontsensing and presents prism, was previously proposed. The simulation shows that pupilwavefront sensing provides full wavefront sensing when the intensity peak of PSF is located within half of the Airy radius from the apex of the sensor. Adding to this, the sensor is shown to have optimum sensor output with a finite bevel size of the pyramidal prism.

A Study on Electrical Characteristics of a Capacitive Pressure Sensor Element to Measure the Pressure of Refrigerant of Air-Conditioner (에어컨 냉매압 측정용 정전용량형 압력센서 소자의 전기적 특성 연구)

  • Choi, Ga-Hyun;Chung, Woo-Young;Choi, Jung-Woon;Kim, Si-Dong;Min, Joon-Won
    • Journal of Sensor Science and Technology
    • /
    • v.24 no.3
    • /
    • pp.208-213
    • /
    • 2015
  • The purpose of this study is to optimize the design of a capacitive pressure sensor element using the simulation of electrical characteristics. The simulation of the ceramic sensor diaphragm ($Al_2O_3$) was performed by permitting pressure to change the curvature of the diaphragm. The pressure capacitance ($C_P$) was increased from 19.63 pF to 15.26 pF by applying pressure because the distance between the electrodes has been changed from $30{\mu}m$ to $15{\mu}m$. When the thickness of the diaphragm was changed to 0.46~0.52 mm, a larger capacitance change showed in accordance with the reduced thickness, which means an increase of sensitivity. However, considering the viewpoint of the signal linearity, it was selected for the optimum thickness of the diaphragm to 0.50 mm. The designed sensor element based on simulated results was tested to measure the output characteristics. Comparing of simulated and measured results, there was a margin of error of approximately 2%.