• Title/Summary/Keyword: Sensor Network Management

Search Result 854, Processing Time 0.026 seconds

Asynchronous Key Management for Energy Efficiency over Wireless Sensor Network (유비쿼터스 센서네트워크에서 에너지효율을 고려하는 비동기적인 키관리 기법)

  • Yoon, Mi-Youn
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.10C
    • /
    • pp.1011-1022
    • /
    • 2006
  • WSN(Wireless Sensor Network) performs to detect and collect environmental information for one purpose. The WSN is composed of a sink node and several sensor nodes and has a constraint in an aspect of energy consumption caused by limited battery resource. So many required mechanisms in WSN should consider the remaining energy condition. To deploy WSN, tile collected information is required to protect from an adversary over the network in many cases. The security mechanism should be provided for collecting the information over the network. we propose asynchronized key management considering energy efficiency over WSN. The proposed key management is focused on independence and difference of the keys used to deliver the information over several routes over the network, so disclosure of any key does not results in exposure of total key information over the overall WSN. Also, we use hash function to update key information for energy efficiency Periodically. We define the insecurity for requested security Properties and Proof that the security properties are guaranteed. Also, we evaluate and analyze the energy efficiency for the proposed mechanism.

Management Scheme of Sensor Network using Circular Coordinates (원형 좌표계를 이용한 센서네트워크 키 관리 기법)

  • Hong, Seong-Sik;Ryou, Hwang-Bin
    • Convergence Security Journal
    • /
    • v.6 no.2
    • /
    • pp.71-80
    • /
    • 2006
  • Sensor network is made from very small and restrictive-power nodes, and they collect some information of environment like as thermal and tremor, etc. And they transfer the information to each other. Generally, supporting the Security service of sensor network is a difficult work, because the nodes have very small cpu-power and low electronic-power. So, More effective management scheme will needed for the maintenance of stability. In this paper, we propose the location based management scheme with circular coordinates. We were make the with the relative location information from one node to other. The new scheme show more simple and effective result then the other method for key management.

  • PDF

Implementing a Power Facility Management Services using RFID/USN Technology (RFID/USN 기술을 이용한 전력설비관리 서비스 구현)

  • Kim, Young-Il;Shin, Jin-Ho;Song, Jae-Ju;Yi, Bong-Jae
    • The KIPS Transactions:PartD
    • /
    • v.15D no.2
    • /
    • pp.263-270
    • /
    • 2008
  • Research of ubiquitous computing becomes more popular topic along with the rapid development of wireless technologies. Firstly, research and development on RFID focuses on manufacturing and retail sectors, because it can improve supply chain efficiency. But, it changes to USN (Ubiquitous Sensor Network) by adding a sensor and wireless network technologies on it. In this research, we design and implement the electric facility management service framework to collect real time information of electric facility using RFID/USN. In electric power industry, it is important the supply of energy must be guaranteed. So many power utilities control and supervise the transmission line to avoid power failures. Utilities install many types of sensor to monitor important facilities by wired network such as optical cable and PLC. In this research, we develop the sensor node which is small, easy to install and using wired network. We design the service framework for electric facility management to collect data using RFID tag, reader and wireless sensor nodes and implement the electric facility management service.

Design of A Faulty Data Recovery System based on Sensor Network (센서 네트워크 기반 이상 데이터 복원 시스템 개발)

  • Kim, Sung-Ho;Lee, Young-Sam;Youk, Yui-Su
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.56 no.1
    • /
    • pp.28-36
    • /
    • 2007
  • Sensor networks are usually composed of tens or thousands of tiny devices with limited resources. Because of their limited resources, many researchers have studied on the energy management in the WSNs(Wireless Sensor Networks), especially taking into account communications efficiency. For effective data transmission and sensor fault detection in sensor network environment, a new remote monitoring system based on PCA(Principle Component Analysis) and AANN(Auto Associative Neural Network) is proposed. PCA and AANN have emerged as a useful tool for data compression and identification of abnormal data. Proposed system can be effectively applied to sensor network working in LEA2C(Low Energy Adaptive Connectionist Clustering) routing algorithms. To verify its applicability, some simulation studies on the data obtained from real WSNs are executed.

A Web-based Sensor Network Query and Data Management (웹 기반의 센서네트워크 질의 및 데이타 관리)

  • Hwang, Kwang-Il;Eom, Doo-Seop
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.33 no.11
    • /
    • pp.820-829
    • /
    • 2006
  • Wireless sensor networks consisting of hundreds to thousands of nodes are expected to be increasingly deployed in coming years, as they enable reliable monitoring and analysis of physical worlds. These networks have unique features that are very different from traditional networks, e.g., the numerous numbers of nodes, limitation in power, processing, and memory. Due to these unique features of wireless sensor networks, sensor data management including querying becomes a challenging problem. Furthermore, due to wide popularization of the Internet and its facility in use, it is generally accepted that an unattended network can be efficiently managed and monitored over the Internet. In particular, in order to more efficiently query and manage data in a sensor network. in this paper, the architecture of a sensor gateway including web-based query server is presented and its implementation detail is illustrated. The presented web-based gateway is largely divided into two important parts: Internet part and sensor network part. The sensor network part plays an important role of handling a variety of sensor networks, including flat or hierarchical network architecture, by using internally layered architecture for efficiently querying and managing data in a sensor network. In addition, the Internet part provides a modular gateway function for favorable exchange between the sensor network and Internet.

Group Key Management Scheme for Survelliance and Reconnaissance Sensor Networks based on Probabilistic Key Sharing (확률론적 키 공유를 통한 감시정찰 센서네트워크에서의 그룹 키 관리 기법)

  • Bae, Si-Hyun;Lee, Soo-Jin
    • Convergence Security Journal
    • /
    • v.10 no.3
    • /
    • pp.29-41
    • /
    • 2010
  • Survelliance and Reconnaissance Sensor Network(SRSN) which can collect various tactical information within battlefield in real time plays an important role in NCW environment, of sensor to shooter architecture. However, due to the resource-limited characteristics of sensor nodes and the intrinsic attributes of sensor network such as wireless communication, the SRSN may be vulnerable to various attacks compared to traditional networks. Therefore, in this paper, we propose a new group key management scheme to guarantee confidentiality, integrity, availability, and authentication during the operation of the SRSN. Proposed scheme generates and distributes the group key based on the topological characteristic of the SRSN and the probabilistic key sharing. The communication cost for distributing the group key is O(logn).

Quorum-based Key Management Scheme in Wireless Sensor Networks

  • Wuu, Lih-Chyau;Hung, Chi-Hsiang;Chang, Chia-Ming
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.6 no.9
    • /
    • pp.2442-2454
    • /
    • 2012
  • To ensure the security of wireless sensor networks, it is important to have a robust key management scheme. In this paper, we propose a Quorum-based key management scheme. A specific sensor, called as key distribution server (KDS), generates a key matrix and establishes a quorum system from the key matrix. The quorum system is a set system of subsets that the intersection of any two subsets is non-empty. In our scheme, each sensor is assigned a subset of the quorum system as its pre-distributed keys. Whenever any two sensors need a shared key, they exchange their IDs, and then each sensor by itself finds a common key from its assigned subset. A shared key is then generated by the two sensors individually based on the common key. By our scheme, no key is needed to be refreshed as a sensor leaves the network. Upon a sensor joining the network, the KDS broadcasts a message containing the joining sensor ID. After receiving the broadcast message, each sensor updates the key which is in common with the new joining one. Only XOR and hash operations are required to be executed during key update process, and each sensor needs to update one key only. Furthermore, if multiple sensors would like to have a secure group communication, the KDS broadcasts a message containing the partial information of a group key, and then each sensor in the group by itself is able to restore the group key by using the secret sharing technique without cooperating with other sensors in the group.

Analytical Approach of Multicasting-supported Inter-Domain Mobility Management in Sensor-based Fast Proxy Mobile IPv6 Networks

  • Jang, Ha-Na;Jeong, Jong-Pil
    • International journal of advanced smart convergence
    • /
    • v.1 no.2
    • /
    • pp.1-11
    • /
    • 2012
  • IP-based Wireless Sensor Networks (IP-WSNs) are gaining importance for their broad range of applications in health care, home automation, environmental monitoring, industrial control, vehicle telematics, and agricultural monitoring. In all these applications, a fundamental issue is the mobility in the sensor network, particularly with regards to energy efficiency. Because of the energy inefficiency of network-based mobility management protocols, they can be supported via IP-WSNs. In this paper, we propose a network-based mobility-supported IP-WSN protocol called mSFP, or the mSFP: "Multicasting-supported Inter-Domain Mobility Management Scheme in Sensor-based Fast Proxy Mobile IPv6 Networks". Based on [8,20], we present its network architecture and evaluate its performance by considering the signaling and mobility cost. Our analysis shows that the proposed scheme reduces the signaling cost, total cost, and mobility cost. With respect to the number of IP-WSN nodes, the proposed scheme reduces the signaling cost by 7% and the total cost by 3%. With respect to the number of hops, the proposed scheme reduces the signaling cost by 6.9%, the total cost by 2.5%, and the mobility cost by 1.5%. With respect to the number of IP-WSN nodes, the proposed scheme reduces the mobility cost by 1.6%.

Energy-Aware System Lifetime Maximization Algorithm in Multi-Hop Sensor Network (멀티홉 센서 네트워크에서 에너지 상황을 고려한 시스템 수명 최대화 알고리즘)

  • Kim, Tae-Rim;Kim, Bum-Su;Park, Hwa-Kyu
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.8 no.6
    • /
    • pp.339-345
    • /
    • 2013
  • This paper addresses the system lifetime maximization algorithm in multi-hop sensor network system. A multi-hop sensor network consists of many battery-driven sensor nodes that collaborate with each other to gather, process, and communicate information using wireless communications. As sensor-driven applications become increasingly integrated into our lives, we propose a energy-aware scheme where each sensor node transmits informative data with adaptive data rate to minimize system energy consumption. We show the optimal data rate to maximize the system lifetime in terms of remaining system energy. Furthermore, the proposed algorithm experimentally shows longer system lifetime in comparison with greedy algorithm.

Robust Hierarchical Data Fusion Scheme for Large-Scale Sensor Network

  • Song, Il Young
    • Journal of Sensor Science and Technology
    • /
    • v.26 no.1
    • /
    • pp.1-6
    • /
    • 2017
  • The advanced driver assistant system (ADAS) requires the collection of a large amount of information including road conditions, environment, vehicle status, condition of the driver, and other useful data. In this regard, large-scale sensor networks can be an appropriate solution since they have been designed for this purpose. Recent advances in sensor network technology have enabled the management and monitoring of large-scale tasks such as the monitoring of road surface temperature on a highway. In this paper, we consider the estimation and fusion problems of the large-scale sensor networks used in the ADAS. Hierarchical fusion architecture is proposed for an arbitrary topology of the large-scale sensor network. A robust cluster estimator is proposed to achieve robustness of the network against outliers or failure of sensors. Lastly, a robust hierarchical data fusion scheme is proposed for the communication channel between the clusters and fusion center, considering the non-Gaussian channel noise, which is typical in communication systems.