• Title/Summary/Keyword: Sensor Mechanism

Search Result 911, Processing Time 0.025 seconds

A Sensor nodes' Residual Energy based Wake-up Control Mechanism in Wireless Sensor Networks (무선 센서 네트워크에서 센서 노드의 잔여 에너지 기반 Wake-up 제어 메커니즘)

  • Jeon, Jun-Heon;Kim, Seong-Cheol
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.21 no.1
    • /
    • pp.187-192
    • /
    • 2017
  • In dense deployments of sensor nodes in Wireless Sensor Networks, the MAC protocol has challenges to solve problems such as reducing delivery delay and reducing energy consumption. To solve these problems lots of protocols are suggested. This paper proposed a sensor nodes' residual energy based wake-up control mechanism, in which each node decides whether it wakes up or stays in sleep mode to save energy consumption by reducing unnecessary idle listening. The main idea of the wake-up control mechanism is to save node's energy consumption. The proposed wake-up control mechanism is based on the RI-MAC protocol, which is one of the receiver-initiated MAC protocols. A receiver node in the proposed mechanism periodically wakes up and broadcasts a beacon signal based on the energy status of the node. A receiver node also adjusts wake-up period based on the traffics. Results have shown that the proposed MAC protocol outperformed RI-MAC protocol in the terms of energy consumption.

Distributed Prevention Mechanism for Network Partitioning in Wireless Sensor Networks

  • Wang, Lili;Wu, Xiaobei
    • Journal of Communications and Networks
    • /
    • v.16 no.6
    • /
    • pp.667-676
    • /
    • 2014
  • Connectivity is a crucial quality of service measure in wireless sensor networks. However, the network is always at risk of being split into several disconnected components owing to the sensor failures caused by various factors. To handle the connectivity problem, this paper introduces an in-advance mechanism to prevent network partitioning in the initial deployment phase. The approach is implemented in a distributed manner, and every node only needs to know local information of its 1-hop neighbors, which makes the approach scalable to large networks. The goal of the proposed mechanism is twofold. First, critical nodes are locally detected by the critical node detection (CND) algorithm based on the concept of maximal simplicial complex, and backups are arranged to tolerate their failures. Second, under a greedy rule, topological holes within the maximal simplicial complex as another potential risk to the network connectivity are patched step by step. Finally, we demonstrate the effectiveness of the proposed algorithm through simulation experiments.

An efficient matching mechanism for real-time sensor data dissemination (실시간 센서 데이터 배포를 위한 효율적 매칭)

  • Seok, Bo-Hyun;Lee, Pill-Woo;Huh, Eui-Nam
    • Journal of Internet Computing and Services
    • /
    • v.9 no.1
    • /
    • pp.79-90
    • /
    • 2008
  • In the ubiquitous environment sensor network technologies have advanced for collecting information of the environment. With the rapid growth of sensor network technology, it is necessary and important to share the collected sensor data with a large base of diverse users. In order to provide dissemination of sensor data, we design an information dissemination system using an independent disseminator between provider and consumer. This paper describes how we designed the information dissemination system using one of the possible dissemination patterns for sensor networks, and an efficient matching algorithm called CGIM (Classed Grouping Index Matching) which employs a dynamic re-grouping scheme.

  • PDF

Traffic Adaptive Wakeup Control Mechanism in Wireless Sensor Networks (무선 센서 네트워크에서 트래픽 적응적인 wakeup 제어 메커니즘)

  • Kim, Hye-Yun;Kim, Seong-Cheol;Jeon, Jun-Heon;Kim, Joon-Jae
    • Journal of Korea Multimedia Society
    • /
    • v.17 no.6
    • /
    • pp.681-686
    • /
    • 2014
  • In this paper, we propose a traffic adaptive mechanism that controls the receiver's wakeup periods based on the generated traffic amounts. The proposed control mechanism is designed for military, wild animal monitoring, and forest fire surveillance applications. In these environments, a low-rate data transmission is usually required between sensor nodes. However, continuous data is generated when events occur. Therefore, legacy mechanisms are ineffective for these applications. Our control mechanism showed a better performance in energy efficiency compared to the RI-MAC owing to the elimination of the sender node's idle listening.

Soft Fault Detection Using an Improved Mechanism in Wireless Sensor Networks

  • Montazeri, Mojtaba;Kiani, Rasoul
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.10
    • /
    • pp.4774-4796
    • /
    • 2018
  • Wireless sensor networks are composed of a large number of inexpensive and tiny sensors used in different areas including military, industry, agriculture, space, and environment. Fault tolerance, which is considered a challenging task in these networks, is defined as the ability of the system to offer an appropriate level of functionality in the event of failures. The present study proposed an intelligent throughput descent and distributed energy-efficient mechanism in order to improve fault tolerance of the system against soft and permanent faults. This mechanism includes determining the intelligent neighborhood radius threshold, the intelligent neighborhood nodes number threshold, customizing the base paper algorithm for distributed systems, redefining the base paper scenarios for failure detection procedure to predict network behavior when running into soft and permanent faults, and some cases have been described for handling failure exception procedures. The experimental results from simulation indicate that the proposed mechanism was able to improve network throughput, fault detection accuracy, reliability, and network lifetime with respect to the base paper.

Development of 3D Measuring System using Spherical Coordinate Mechanism by Point Laser Sensor (포인트 레이저 센서를 이용한 구면좌표계식 3차원 형상측정시스템 개발)

  • 맹희영;성봉현
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2004.10a
    • /
    • pp.201-206
    • /
    • 2004
  • Laser scanner are getting used for inspection and reverse engineering in industry such as motors, electronic products, dies and molds. However, due to the lack of efficient scanning technique, the tasks become limited to the low accuracy purpose. The main reasons for this limitation for usefulness are caused from the optical drawback, such as irregular reflection, scanning direction normal to measuring surface, the influence of surface integrity, and other optical disturbances. To overcome these drawback of laser scanner, this study propose the mechanism to reduce the optical trouble by using the 2 kinds of rotational movement axis and by composing the spherical coordinate to scanning the surface keeping normal direction consistently. So, it could be designed and interfaced the measuring device to realize that mechanism, and then it could acquisite the accurate 3D form cloud data. Also, these data are compared with the standard master ball and the data acquisited from the touch point sensor, to evaluate the accuracy and stability of measurement and to demonstrate the implementation of an dental tooth purpose system

  • PDF

Design and Implementation of Global State Management for Sensor Networks (센서 네트워크에서의 글로벌 상태 지원 기법의 설계 및 구현)

  • Lee, Keun-Soo;Kim, Jun-Yeong;Cho, Ki-Ho;Kim, Doo-Hyun
    • Journal of Internet Computing and Services
    • /
    • v.10 no.6
    • /
    • pp.37-50
    • /
    • 2009
  • In this paper, we proposed a mechanism for effective cooperation in sensor network. There are a few mechanism like RBS, TPSN, FPSN for sensor network. However these are supporting synchronization among nodes without global state. Therefore, we proposed SGSM(Simple Global State Management) to maintain global state among sensor nodes. As experimental results, we confirmed loss rate is within 1% as maintaining global state with SGSM mechanism. In this paper, we defined global state in sensor network and introduced SGSM for improving timming accuracy in sensor environment.

  • PDF

A Mechanism for Handling Selfish Nodes using Credit in Sensor Networks (센서 네트워크에서 크레딧을 이용한 이기적인 노드 처리 방안)

  • Choe, Jong-Won;Yoo, Dong-Hee
    • Journal of KIISE:Information Networking
    • /
    • v.35 no.2
    • /
    • pp.120-129
    • /
    • 2008
  • The purpose of sensor network is gathering the information from sensor nodes. If there are selfish node that deliberately avoid packet forwarding to save their own energy, the sensor network has trouble to collect information smoothly. To solve this problem we suggest a mechanism which uses credit payment schema according to the amount of forwarding packets. Sensor nodes use credits to send their own message and they forward packets of other sensor nodes to get credits. To offer authenticity we combined the roles of sink node and server, also we used piggybacking not to send additional report message. The packet trace route is almost fixed because sensor node doesn't have mobility. In this case, it happens that some sensor nodes which don't receive forwarding packets therefore they can't get credit. So, we suggested the way to give more credits to these sensor nodes. Finally, we simulated the suggested mechanism to evaluate performance with ns2(network simulator). As a result, packet transmission rate was kept on a high rate and the number of arrival packets to sink node was increased. Also, we could verify that more sensor nodes live longer due to deceasing the energy consumption of sensor nodes.

Secure Routing Mechanism to Defend Multiple Attacks in Sensor Networks (무선 센서 네트워크에서 다중 공격 방어를 위한 보안 라우팅 기법)

  • Moon, Soo-Young;Cho, Tae-Ho
    • Journal of Intelligence and Information Systems
    • /
    • v.16 no.1
    • /
    • pp.45-56
    • /
    • 2010
  • Sensor Networks are composed of many sensor nodes, which are capable of sensing, computing, and communicating with each other, and one or more sink node(s). Sensor networks collect information of various objects' identification and surrounding environment. Due to the limited resources of sensor nodes, use of wireless channel, and the lack of infrastructure, sensor networks are vulnerable to security threats. Most research of sensor networks have focused on how to detect and counter one type of attack. However, in real sensor networks, it is impractical to predict the attack to occur. Additionally, it is possible for multiple attacks to occur in sensor networks. In this paper, we propose the Secure Routing Mechanism to Defend Multiple Attacks in Sensor Networks. The proposed mechanism improves and combines existing security mechanisms, and achieves higher detection rates for single and multiple attacks.