• Title/Summary/Keyword: Sensor Location Estimation

Search Result 182, Processing Time 0.026 seconds

A Study of Relative Location Estimation between Static Passive RFID Tag and Mobile Robot (정적 RFID 수동태그와 이동로봇의 상대위치인식에 대한 기법연구)

  • Moon W.S.;Ji Y.K.;Park J.H.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.10a
    • /
    • pp.892-896
    • /
    • 2005
  • This paper presents method of depriving the relationship between static passive RFID tag and mobile robot In the field of tag-range. We use probabilistic sensor model of RFID reader by experiments. And we proposed estimation techniques by using direction of identification and relative-distance from the sensor model. Corresponding to distribution of identification, we can correct estimated tag position in relative coordinate. Simulation and Experimental Results show that the proposed method can provide good performance and thus be used fer mobile-robot localization.

  • PDF

Theoretical Limits Analysis of Indoor Positioning System Using Visible Light and Image Sensor

  • Zhao, Xiang;Lin, Jiming
    • ETRI Journal
    • /
    • v.38 no.3
    • /
    • pp.560-567
    • /
    • 2016
  • To solve the problem of parameter optimization in image sensor-based visible light positioning systems, theoretical limits for both the location and the azimuth angle of the image sensor receiver (ISR) are calculated. In the case of a typical indoor scenario, maximum likelihood estimations for both the location and the azimuth angle of the ISR are first deduced. The Cramer-Rao Lower Bound (CRLB) is then derived, under the condition that the observation values of the image points are affected by white Gaussian noise. For typical parameters of LEDs and image sensors, simulation results show that accurate estimates for both the location and azimuth angle can be achieved, with positioning errors usually on the order of centimeters and azimuth angle errors being less than $1^{\circ}$. The estimation accuracy depends on the focal length of the lens and on the pixel size and frame rate of the ISR, as well as on the number of transmitters used.

The Location Estimation Method through Snooping Node for Indoor Environment (실내에서 보정노드를 통한 위치추정 기법)

  • Park, Hyun-Moon;Shin, Soo-Young;NamGung, Jung-Il;Park, Soo-Huyn
    • Journal of Korea Multimedia Society
    • /
    • v.11 no.2
    • /
    • pp.182-196
    • /
    • 2008
  • The location estimation using sensor network has been considerably researched. The methods taking the differences of the forms of location estimation between indoors and outdoors into consideration have been studied. While it is possible for outdoor location to be estimated because outdoor location estimation has a consistent distribution during unit period through the value of RSSI(Received Signal Strength Indication) on outdoor location estimation, Indoor location estimation is difficult since multi-path and interference indoors are higher than those outdoors and indoor location estimation can be affected by other factors. In this paper, we revise the information of RSSI changed by multi-path and interference through the Moving Average method and K-means algorithm and propose the method of estimation for the value of RSSI with reliability in the group of signals received during unit period. We also suggest the way to put some weights on fixed nodes in network using a snooping node on location estimation and then evaluate the efficiency of location awareness as compared with the existing method by implementing proposed method on system through the reconfiguration of network.

  • PDF

A Study on method to improve the detection accuracy of the location at Multi-sensor environment (다중센서 환경에서 위치추정 정확도 향상 방안 연구)

  • Na, In-Seok;Kim, Yeong-Gil;Jung, Ji-Hoon;Jo, Je-Il;Kim, San-Hae
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2011.10a
    • /
    • pp.337-340
    • /
    • 2011
  • In location finding system using spaced multi-sensor, Depending on the signal source's location and the location of the sensors Position estimation accuracy is determined. This phenomenon is called GDOP effect. and to minimize these effects, research is needed on how. In this paper, I will describe how to minimize GDOP effect, estimating GDOP using angle of arrivals of multi sensors, and removing sensor error factor.

  • PDF

Localization Estimation Using Artificial Intelligence Technique in Wireless Sensor Networks (WSN기반의 인공지능기술을 이용한 위치 추정기술)

  • Kumar, Shiu;Jeon, Seong Min;Lee, Seong Ro
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.39C no.9
    • /
    • pp.820-827
    • /
    • 2014
  • One of the basic problems in Wireless Sensor Networks (WSNs) is the localization of the sensor nodes based on the known location of numerous anchor nodes. WSNs generally consist of a large number of sensor nodes and recording the location of each sensor nodes becomes a difficult task. On the other hand, based on the application environment, the nodes may be subject to mobility and their location changes with time. Therefore, a scheme that will autonomously estimate or calculate the position of the sensor nodes is desirable. This paper presents an intelligent localization scheme, which is an artificial neural network (ANN) based localization scheme used to estimate the position of the unknown nodes. In the proposed method, three anchors nodes are used. The mobile or deployed sensor nodes request a beacon from the anchor nodes and utilizes the received signal strength indicator (RSSI) of the beacons received. The RSSI values vary depending on the distance between the mobile and the anchor nodes. The three RSSI values are used as the input to the ANN in order to estimate the location of the sensor nodes. A feed-forward artificial neural network with back propagation method for training has been employed. An average Euclidian distance error of 0.70 m has been achieved using a ANN having 3 inputs, two hidden layers, and two outputs (x and y coordinates of the position).

Sensor Location Estimation in of Landscape Plants Cultivating System (LPCS) Based on Wireless Sensor Networks with IoT

  • Kang, Tae-Sun;Lee, Sang-Hyun
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.12 no.4
    • /
    • pp.226-231
    • /
    • 2020
  • In order to maximize the production of landscape plants in optimal condition while coexisting with the environment in terms of precision agriculture, quick and accurate information gathering of the internal environmental elements of the growing container is necessary. This may depend on the accuracy of the positioning of numerous sensors connected to landscape plants cultivating system (LPCS) in containers. Thus, this paper presents a method for estimating the location of the sensors related to cultivation environment connected to LPCS by measuring the received signal strength (RSS) or time of arrival TOA received between oneself and adjacent sensors. The Small sensors connected to the LPCS of container are known for their locations, but the remaining locations must be estimated. For this in the paper, Rao-Cramer limits and maximum likelihood estimators are derived from Gaussian models and lognormal models for TOA and RSS measurements, respectively. As a result, this study suggests that both RSS and TOA range measurements can produce estimates of the exact locations of the cultivation environment sensors within the wireless sensor network related to the LPCS.

Study on Modeling and Simulation for Fire Localization Using Bayesian Estimation (화원 위치 추정을 위한 베이시안 추정 기반의 모델링 및 시뮬레이션 연구)

  • Kim, Taewan;Kim, Soo Chan;Kim, Jong-Hwan
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.58 no.6
    • /
    • pp.424-430
    • /
    • 2021
  • Fire localization is a key mission that must be preceded for an autonomous fire suppression system. Although studies using a variety of sensors for the localization are actively being conducted, the fire localization is still unfinished due to the high cost and low performance. This paper presents the modeling and simulation of the fire localization estimation using Bayesian estimation to determine the probabilistic location of the fire. To minimize the risk of fire accidents as well as the time and cost of preparing and executing live fire tests, a 40m × 40m-virtual space is created, where two ultraviolet sensors are simulated to rotate horizontally to collect ultraviolet signals. In addition, Bayesian estimation is executed to compute the probability of the fire location by considering both sensor errors and uncertainty under fire environments. For the validation of the proposed method, sixteen fires were simulated in different locations and evaluated by calculating the difference in distance between simulated and estimated fire locations. As a result, the proposed method demonstrates reliable outputs, showing that the error distribution tendency widens as the radial distance between the sensor and the fire increases.

An Integrated Approach for Position Estimation using RSSI in Wireless Sensor Network

  • Pu, Chuan-Chin;Chung, Wan-Young
    • Journal of Ubiquitous Convergence Technology
    • /
    • v.2 no.2
    • /
    • pp.78-87
    • /
    • 2008
  • Received signal strength indicator (RSSI) is used as one of the ranging techniques to locate dynamic sensor nodes in wireless sensor network. Before it can be used for position estimation, RSSI values must be converted to distances using path loss model. These distances among sensor nodes are combined using trilateration method to find position. This paper presents an idea which attempts to integrate both path loss model and trilateration as one algorithm without going through RSSI-distance conversion. This means it is not simply formulas combination but a whole new model was developed. Several advantages were found after integration: it is able to reduce processing load, and ensure that all values do not exceed the maximum range of 16-bit signed or unsigned numbers due to antilog operation in path loss model. The results also show that this method is able to reduce estimation error while inaccurate environmental parameters are used for RSSI-distance conversion.

  • PDF

Selection of Optimal Sensor Locations for Thermal Error Model of Machine tools (공작기계 열오차 모델의 최적 센서위치 선정)

  • 안중용
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1999.10a
    • /
    • pp.345-350
    • /
    • 1999
  • The effectiveness of software error compensation for thermally induced machine tool errors relies on the prediction accuracy of the pre-established thermal error models. The selection of optimal sensor locations is the most important in establishing these empirical models. In this paper, a methodology for the selection of optimal sensor locations is proposed to establish a robust linear model which is not subjected to collinearity. Correlation coefficient and time delay are used as thermal parameters for optimal sensor location. Firstly, thermal deformation and temperatures are measured with machine tools being excited by sinusoidal heat input. And then, after correlation coefficient and time delays are calculated from the measured data, the optimal sensor location is selected through hard c-means clustering and sequential selection method. The validity of the proposed methodology is verified through the estimation of thermal expansion along Z-axis by spindle rotation.

  • PDF

A Three Dimensional Object Localization Scheme using A Smartphone (스마트폰을 이용한 물체의 3차원 위치 추정 기법)

  • Kwon, Oh-Heum;Joung, Myoung-Hwan;Song, Ha-Joo
    • Journal of Korea Multimedia Society
    • /
    • v.20 no.8
    • /
    • pp.1200-1207
    • /
    • 2017
  • Sensors in a smartphone can be used to measure various physical quantities. In this paper, we propose an object localization scheme in a three dimenstional using a smart phone. The proposed scheme estimates the location of an object by observing it from several different points. The direction to the target object and the locations of the observation points are collected at each observation point using the location sensor and the orientation sensor in the smartphone. Based on these observations, the proposed scheme derives three dimensional line of sight vectors and estimates the location of the target object that minimizes the estimation error. We implemented the proposed scheme on an Android smartphone and tested its performance by estimating the height of a building and characteristics of the proposed approach.