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An Integrated Approach for Position Estimation
using RSSI in Wireless Sensor Network
Chuan-Chin Pu and Wan-Young Chung

Abstract—Received signal strength indicator (RSSI) is used as one of the ranging technigues to locate dynamic sensor
nodes in wireless sensor network. Before it can be used for position estimation, RSSI values must be converted to
distances using path loss model. These distances among sensor nodes are combined using trilateration method to find
position. This paper presents an idea which attempts to integrate both path loss model and trilateration as one aigorithm
without going through RSSi-distance conversion. This means it is not simply formulas combination but a whole new
model was developed. Several advantages were found after integration: it is able to reduce processing load, and ensure
that all values do not exceed the maximum range of 16-bit signed or unsigned numbers due to antilog operation in path
loss model. The results also show that this method is able to reduce estimation error while inaccurate environmental

parameters are used for RSSI-distance conversion.

Index Terms—Location Estimation, Ranging, Received Signal Strength, Wireless Sensor Network.

1 INTRODUCTION

TO estimate the position of a mobile tar-
get within specified area of wireless sen-
sor network (WSN) coverage, sensor nodes
first measures the distances between stationary
nodes and the mobile node. Distance between
two sensor nodes can be measured through
one of the ranging techniques such as time-
different-of-arrival (TDOA) [1] and received
signal strength indicator (RSSI) [2].

Among them, RSSI is the most convenient
ranging method for distance measurement
which simply records the received power level
during signal reception. In addition, the power
consumption is lower than other techniques
since it does not need additional components
dedicated for ranging. Therefore, RSSI ranging
is widely used in various applications.
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Generally, the RSSI values represent received
power in decibel form in IEEE 802.11 and IEEE
802.15.4 wireless interfaces. These RSSI values
are first converted to normal scale using antilog
function, and the distances between sensor
nodes can be obtained using path loss model
[3]. With these distances, trilateration [4] can
be used to calculate the position of the mobile
node.

Since antilog function is used to convert RSSI
values to distance values, small RSSI variation
in decibel form leads to large variation in es-
timated distance. Hence, the position error be-
comes sensitive to input variation. In addition,
path loss model is based on attenuation ex-
ponent as the major environmental parameter
for RSSI-distance conversion. If the calibrated
attenuation exponent is not accurate due to
uncertainty of RSS], it leads to permanent large
position estimation error. In other words, the
output performance of the estimation result
becomes too environmental dependant and un-
reliable.

The intention of this study is to evaluate
whether the two main processes (distance con-
version and trilateration) of position estima-
tion can be integrated as one, thus ignoring
the antilog operation required in the distance



CHUAN-CHIN PU et al. : AN INTEGRATED APPROACH FOR POSITION ESTIMATION USING RSSI~ 79

conversion process. The rest of the paper is
organized as follows: Section 2 gives the related
works done previously that describes range-
based estimation algorithms and the relevant
ranging techniques. Section 3 states the practi-
cal problems that may be faced in implemen-
tation and the proposal of solution. Section
4 describes the proposed integrated position
estimation algorithm. Section 5 gives the details
of experiment and settings. Section 6 illustrates
the experimental results and discussion. Sec-
tion 7 gives conclusions about the work.

2 RELATED WORKS

Localization problems have been widely re-
searched that result in broad categories of po-
sition estimation techniques [5]. The related
works that mainly affect the result of estima-
tion are the modeling of radio propagation
manner and characterization of environment.
If the studies of radio signal propagation can
be modeled optimally, the ranging results can
be more accurate and stable, leading to more
accurate and precise position estimation. For
this reason, various experiments have been
conducted for RSSI characterization.

One of the previous works characterized
empirically the radio signal strength variabil-
ity in 3-D area based on IEEE 802.15.4 using
monopole antennas [6]. From the experiments,
several sources of RSSI variability were studied
including radio transmitter and receiver vari-
ability, the antenna orientation, and the multi-
path effect of radio propagation in indoor envi-
ronment. This research indicates an important
fact that characterizing indoor environment for
distance measurement is difficult using the
existing radio propagation models because of
multipath reflection and shadowing.

Another work was done for comparing the
RSSI and link quality indicator (LQI), which
studies the detail profile of RSSI and LQI
performance in [7]. In this work, the packet
yield, RSSI, and LQI values were measured
as a function of distance, angle, and transmit
power, with the consideration of environmental
conditions. The most significant result found in
this research is that transmitting and receiving

node heights have a major impact on link
performance.

For the research works on path loss model,
[3] provides an empirical path loss model for
indoor wireless channels in laboratory build-
ing. The most significant contribution is the
characterization of multi-wall or multi-floor
attenuation using path loss model. [8] and
[9] studies the path loss model with addi-
tional considerations including the distance-
dependent path loss, the attenuation due to
reflections of walls, and the attenuation due to
transmitting through the walls. A dynamic in-
door signal map construction and localization
algorithms was also developed based on the
model.

To use path loss model effectively and ac-
curately for position estimation, environmen-
tal characterization strategies [10] was studied
to find accurate parameters in the calibration
phase. This research discovered that the envi-
ronmental parameters in path loss model can
be divided into temporal and spatial nature.
The results in this study show that all sensor
nodes which are located at different places
share the same characterization value for the
temporal parameter whereas different values
for the spatial parameters.

3 PROBLEMS STATEMENT

Theoretically, position finding based on range-
based techniques requires the true distances
among sensor nodes for trilateration. However,
the RSSI values are normally expressed in dBm
[11] using IEEE 802.15.4 radio interface. This
is a compressed version of received power.
The problem is that when these values are
measured and stored in the RSSI register, some
least-significant digits after the decimal point
are ignored. This leads to good distance resolu-
tion at near distance and worse resolution at far
distance after RSSI-distance conversion using
path loss model. If the distance is very far,
small increment of RSSI value causes a large
leap of distance estimation. On the other hand,
increasing RSSI from one quantized level to
another level requires long distance movement.
This gives difficulty to obtain accurate and high
resolution position estimation.
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In the typical path loss model [3], the main
characterization factors are based on attenua-
tion exponent n and the path loss Ppr0) at
reference distance dy:

PdZR—PpL(do)—loan1Og10 (di> (1)
0

where P; is the transmission power and F;
is the received power at distance d to the
transmitter. All powers are expressed in dBm.
During the field measurement and calibration
phase, attenuation exponent n and Ppp ) are
obtained for each transmitter. During location
estimation phase, the received power F; is
converted into distance d using the following
expression:

Pt—Ppr(d0)—Fd

d=dox 10" Ton )

In (2), all determinate parameters and input
are elements of the exponent with base 10. It is
clear that a small error of n or Ppyq) produces
large distance estimation error at output. For
indoor environment, the value of n can be mea-
sured differently at different locations during
calibration phase. Therefore, the resulting esti-
mation is not absolutely accurate in practical.
If the received power has slight fluctuation, the
estimated distance can be large fluctuation and
unstable.

Another practical problem is the size of data
during computation process. For most of the
low-power mobile devices such as wireless sen-
sor motes, the processors or microcontrollers
are limited in processing capability and power
supply. All algorithms and methods used in
these devices for in-network processing are
expected to be simple and fast in computation.
Therefore, the numbers involved in the compu-
tation must be small and confined in small vari-
ation. Inevitably, path loss model using antilog
operation to directly convert RSSI to distance
produces extremely large values at output that
may exceed the limit of bit storage support
when measurement is unstable and fluctuating.

To solve the practical problems stated above,
it is necessary to review and develop new
estimation algorithm, which are suitable for
lightweight implementation in sensor nodes.

Taylor series is able to avoid antilog operation
in the RSSI-distance conversion, hence reduc-
ing processing difficulty. However, the resul-
tant values from Taylor series are close to or
equivalent to the values found using antilog
operation, thus still cannot avoid large number
produced at output. The only way to solve this
problem is to skip RSSI-to-distance conversion
step.

The proposed idea of solution is to estimate
position without going through the RSSI-to-
distance conversion process, and directly esti-
mate location using the raw RSSI values. How-
ever, it is not that simple as the RSSI value
is not able to represent distance exactly. With
this, in-depth study was carried out to match
the unconverted RSSI values to position values.
The proposed algorithm is shown in the next
section.

4 PROPOSED POSITION ESTIMATION
METHOD

The RSSI value provided from CC2420 radio
transceiver using IEEE 802.15.4 is not exactly
received power. Therefore, it is necessary to
convert RSSI into the actual power P received
at the RF pins of the radio transceiver as shown
in the following expression:

3)

where RSSI is the value recorded in the
register of the radio transceiver. of fset was
found empirically from the front end gain and
it is approximately equal to 45 dBm. This is to
make sure that the received power P has dy-
namic range from 100 to 0 dBm. Here, 100 dBm
indicates the minimum and 0 dBm indicates the
maximum power.

For position estimation, it is assumed that
three sensor nodes are used as beacon nodes or
stationary nodes and one as mobile node. The
beacon nodes are located at the three corners
of the estimation area (0,0), (L,0), and (0,W)
respectively, where L represent the length and
W represent the width as illustrated in Fig. 1.

The mobile node measures RSSI of signals
from beacon node 1 to 3 and calculates received
powers P, to P; respectively. These values are

P = RSSI+ of fset
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Fig. 1. The scenario of position estimation using
three beacon nodes and one mobile node

then directly fed into trilateration process with-
out going through conversion as shown in the
following expressions:

_ PR+ (PP

H - @
Py + (P - P

where H and V are the horizontal and ver-
tical estimates and used to represent the input
for z and y respectively. P, and Py are the
received powers obtained when two sensor
nodes are placed apart with a distance L and
W respectively.

In this approach, a linear approximation
model is developed to map the H and V values
to true z and y values as shown in the follow-
ing expressions:

H=a,M+b, (6)

V=a,N+b, 7)

where a, and b, are the coefficients of the
model for z, while a, and b, are the coefficients
of the model for y. During calibration phase,
these coefficients are used to characterize envi-
ronment. These coefficients are relevant to each
other and they are derived from the typical
path loss prediction model as shown in the
following expressions:

. = 10n(1 — Py)
. = 7

®)

10n(1 - P@O)
Uy =—37 )
b, — P2 +20n(1 — Py)log L 10)
L
2 ’ -
b, = Py + 20n,(1W Pao) logW (1)

From (8) to (11), n and Py, are the attenuation
exponent and the received power measured at
reference distance dy. In this case, all attenu-
ation exponents n; are assumed the same for
every beacon nodes. In (6) and (7), M and N
can be expressed in terms of z and

d2 $2+y2
M=log|—=2)=log| —=—— 12
oo () = (o) 02

d? 2% 4 3
vt () = (it E) 09

where z and y are the true location coordi-
nate of the mobile node. d;, d; and ds represent
the true distances between the mobile node and
the three beacon nodes. Using the true location
coordinate z and y, M and N in (12) and (13)
can be found for calibration purpose in (6) and
(7).

By applying the expressions mentioned
above, the proposed estimation algorithm con-
sists of two phase operation. In the initial
phase, field measurements are performed to
find the parameters a,, b,, a, and b, that appro-
priately characterize the environment. In the
second phase, position estimation is performed
to find location coordinate x and y.

During the field measurement phase, several
parameters are required to obtain. At first, P,
and Py can be obtained by finding the values
between beacon node 1 and 2 for P;, and bea-
con node 1 and 3 for Py. The coefficients b,
and b, can be obtained by placing the mobile
sensor node at the center location (L/2,W/2) of
the room. This causes M and N become zero in
(12) and (13). With this, the coefficients b, and
b, are exactly equal to the values of H and V
respectively. This can be obtained by referring
(6) and (7). The H and V values are found from
(4) and (5).
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After the coefficients b, and b, are obtained,
the next step is to find the coefficients a, and
a,. This can be achieved by placing the mobile
node on the horizontal center line (z,W/2) for
a, and the vertical center line (L/2,y) for a,.
When the mobile sensor node is placed at any
point except center of the horizontal line, the
value of M can be calculated by providing z
and y values into (12). This M is put into the
(6) to calculate the coefficient a,. Since b, was
obtained previously, and H value is from (4),
the coefficient a, can be easily computed. The
finding of a, is similar to a, but the mobile
sensor node is put at any point except center
of the vertical line, and using (13) to find N
and both (5), (7) to find a,.

For the procedure of finding a, and a,, it is
recommended to choose several locations on
the horizontal line and vertical line, and use
the average value of a, and a, to improve
accuracy. Another recommendation is to keep
the measuring points on the horizontal and
vertical line close to center but not at the
center. For example, (L/4) < z < (3L/4) and
(W/4) <y < (3W/4).

Once all of the coefficients are obtained, field
measurement phase is completed. The next
phase is the online location estimation phase. In
this phase, the following expressions are used
to estimate = and y:

CHbe o s L

= (B xa™) 45 (14)

yz—v_by(ﬂxa‘gy)—km (15)
Qy 2

where S, and S, are called “linear selector”,
which choose the most fitting linear approx-
imations to z and y. Depends on the input
conditions, the values of S, and S, have to
be selected appropriately. The linear selectors
S, and S, have values ranging from -5 to +5,
and 8 = 300, o = 1.25. The selection of S,
and S, are based on the displacement between
mobile node and beacon nodes 1 and 2 for
S;, and the displacement between mobile node
and beacon nodes 1 and 3 for S,. Thus, the
currently estimated y can be used to find S,
and the currently estimated z can be used to
find S,.

10 T T T T
=— Real data
) H S Modeled data (n = 2.7).
-20 e R Modeled data {n = 2 5) 1)
1 : T T
W
3
L e A B
X
.’A\
= 3,
[, N SE e T -
g )
Z "\\‘
2 -501-- . .
1 Tt B AN i, ' s T B B A ¥ W -
TR .M
S I S ’ )
80 1 i i
] 100 200 300 400: 500

Distance (cm}

Fig. 2. Characterization of the radio channel

5 EXPERIMENTAL SETUP

For comparison between the proposed method
and path loss model, the characterization of
environment was also done to find reference
environmental parameters. This is to provide a
result that can be used to evaluate the perfor-
mance of the proposed new approach. During
the characterization process, RSSI values are
slightly different each time and each node due
to different directions and locations. Therefore,
several times of measurement were done to
find the average values as shown in Fig. 2. Note
that the measurement results are expressed in
power (dBm).

In Fig. 2, besides the real data, two modeled
data lines were obtained using path loss model
with the attenuation exponent n = 2.7 and n =
2.5. Both of the modeled data are using dy =
100 c¢cm reference distance, and Py = 50 dBm
as the power received at reference distance.

6 EXPERIMENTAL RESULTS

In the experiment, the mobile sensor node was
first located at the center (L/2,W/2). Two coef-
ficient values were obtained: b, = 9.09 and b, =
10.58. The following steps were performed by
fixing y values and observing H and V values
when z is varying from 0 to L. Three y values
were chosen, which are 120, 200, and 280. The
results are shown in Fig. 3. Note that the values
illustrated are (H — b;) and (V —b,).
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Fig. 3. Relationship of H and V in three different
conditions of y setting

Fig. 3 explains the relationship of H and V
values with different y settings. The crossing
point of H and V is moving when the y is
changing. When fixing y to W/2, the crossing
point is exactly at center (L/2) in Fig. 3(a).
From analyzing the three figures, it shows a
truth that the H values are always crossing
the origin when the z value is exactly L/2.
The only difference among Fig. 3(a), 3(b) and
3(c) for H values is the slop. For V values,
it is always kept at zero when y is exactly
W/2. From the experimental observation, the
crossing point of H and V' curves happen when

= y. The values before crossing point happen
in the condition z < y, and after crossing point
in the condition x > y.

In order to use the H and V values effectively
for the finding of = and y, analysis on the
variation of H and V values is necessary. In
the following results, all H values with fixing
y at several equal-distance points are plotted as
shown in Fig. 4.

For better illustration, Fig. 4(a) shows the H
values when y is fixed from 0 to W/2 (200 cm),
and Fig. 4(b) shows the H values when y is
fixed from W/2 (200 cm) to W (400 cm) with
40 cm apart. Both Fig. 4(a) and 4(b) produce
a total of 10 characteristic curves for H. At
y = W/2 (200 cm), the H values are treated
as the standard for the reference to others. The
difference among these curves is the slop. For
y < W/2, the slops are larger, and for y > W/2,
the slops are smaller. By observation, all slops
follow a certain pattern. This gives a systematic
modeling scheme to be established. The models
described in (14) and (15) are derived from Fig.
4.

For better modeling of the H values, (12) and
(13) are used instead of (4) and (5). One of
the purposes is to make the modeling avail-
able to all possible environment settings. The
comparison of the real and modeled H values
with fixing y at several equal-distance points is
shown in Fig. 5(a) and 5(b).

All H values in Fig. 5(a) are the real data for
(12) and the values in Fig. 5(b) are the modeled
data for (3 x o) in (14). Comparing Fig. 5(a)
and 5(b), we can prove that (14) is able to model
(12) with slight difference only. For the z and y
closer to the center of room such as (L/4) < z <
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(3L/4) and (W/4) < y < (3W/4), the modeling
result is more accurate.

In the following experiments, the proposed
algorithm is used to estimate position to find z.
The experiment was done by moving the mo-
bile sensor node from location (125¢cm, 200cm)
to location (375cm, 200cm). In between, a total
of 9 samples were taken for location estimation.
The sampling locations are 31 ¢cm apart. The
same data was provided to both the proposed
method and pass loss method for comparison
as shown in Fig. 6.

Fig. 6(a) is the estimation result obtained
using path loss model and Fig. 6(b) is using the
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Fig. 5. Comparison of the real and modeled H
values

proposed method. In this case, the estimation
is assumed to be the best scenario as the most
accurate parameters or coefficients are used for
estimation (n = 2.5, a, = 2.8). The root mean
square error for typical path loss model in Fig.
6(a) is 9.29 cm, and for the proposed method in
Fig. 6(b) is 7.38 cm. This result proves that the
proposed method is able to estimate position as
good as path loss model in the best scenario,
and the result is even slightly better since the
root mean square error between the real and
estimated position values is reduced 1.9 cm.
Fig. 7 shows the location estimation results
for = when the environmental parameters are
not accurate. This means the parameters ob-
tained during the field measurement phase are
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Fig. 6. Position estimation for z in the best
scenario

not optimal. In Fig. 6(a), the best scenario was
obtained using the attenuation exponent n =
2.5 for estimation. In Fig. 7(a), the attenuation
exponent n = 2.7 was used for estimation. It
is clear that n = 2.5 and 2.7 are only small
difference as observed in Fig. 2. However, the
estimation error can be very large due to am-
plification of antilog operation. To the large
variation of RSSI values, this problem could
happen frequently. For the estimation result
using path loss model in Fig. 7(a), the root
mean square error between real and estimated
position is large (17.38 cm).

In Fig. 6(b), the best scenario was obtained
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Fig. 7. Location estimation for = when the
parameters are not accurate

using the coefficient a, = 2.8 for estimation. In
Fig. 7(b), the coefficient a, = 3.0 was used for
estimation. The difference is 0.2, same as the
case of attenuation exponent n in the previous
example. For the estimation result using the
proposed method in Fig. 7(b), the root mean
square error between real and estimated po-
sition is still small (9.65 cm). Compared to
path loss model, this proves that the proposed
method reduces root mean square error by 7.7
cm.

Compare the root mean square error between
the best scenario and the inaccurate parameters
condition, the typical path loss model increases
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8.1 cm (17.38 cm - 9.29 cm), and the proposed
method only increases 2.3 cm (9.65 cm - 7.38
cm) when the parameters have 0.2 error. This
proves that the proposed method has smaller
change at output as the input or parameters are
changed.

In practical condition, real and raw RSSI val-
ues are unstable and fluctuating against time
and space because of multipath fading and
shadowing effects in indoor environment. Fig.
8 shows the performance of estimation using
both path loss model and proposed integrated
method by feeding the input with real and raw
RSSI values. Raw RSSI values means the values
are obtain directly from measurement without
going through any signal processing.

In Fig. 8(a), the estimation of position was
obtained by providing raw RSSI values to path
loss model for RSSI-distance conversion, and
pass to trilateration for position z. From the il-
lustration, the estimated values are also fluctu-
ating largely with a root-mean-square error of
160 cm. In Fig. 8(b), the estimation of position
was obtained by providing raw RSSI values to
our proposed integrated algorithm for position
z. From the diagram, the estimated values are
more stable and smaller fluctuation amplitude.
The overall root-mean-square from this estima-
tion is only 125 cm. By comparing Fig. 8(a)
and 8(b), it is very clear that the proposed
method reduces fluctuation and overall root-
mean-square error.

Fig. 9 illustrates the performance compar-
ison of estimation using both path loss and
proposed integrated algorithms by feeding the
input with real and smoothed RSSI values.
Dash line indicates the estimation using path
loss model, bold line indicates the estima-
tion using proposed integrated method, and
the narrow line indicates the actual position.
From this comparison, it is clear by observation
that proposed integrated estimation is closer
to the actual position. This proves that our
proposed method is more accurate than path
loss method.

7 CONCLUSIONS

A new approach to RSSI position estimation al-
gorithm is presented. The proposed algorithm
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Fig. 8. Location estimation for z using real and
raw RSSI signals

estimates location without converting the RSSI
values to distance directly, thus the required
processing is lower, and the data range is small
that it does not exceed the data size provided.

The experimental results show that this
method reduces estimation error 1.9 cm in the
best scenario, and 7.7 cm when 0.2 inaccu-
rate parameters obtained during field measure-
ment. This proves that the algorithm is able
to provide stable location estimation. When
the input values are fluctuating, the output of
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Fig. 9. Location estimation for z using real
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the estimation does not amplify the variation.
When the parameters obtained during the field
measurement phase are not optimal, the in-
fluence can be small. From the estimation of
position using real and raw RSSI values, we are
able to prove that the overall root-mean-square
error can be reduced 35 cm.
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