• Title/Summary/Keyword: Sensor Location Estimation

Search Result 183, Processing Time 0.028 seconds

Multihop Range-Free Localization with Virtual Hole Construction in Anisotropic Sensor Networks (비등방성 센서 네트워크에서 가상 홀을 이용한 다중 홉 Range-Free 측위 알고리즘)

  • Lee, Sangwoo;Kim, Sunwoo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.38C no.1
    • /
    • pp.33-42
    • /
    • 2013
  • This paper presents a multihop range-free localization algorithm to estimate the physical location of a normal node with local connectivity information in anisotropic sensor networks. In the proposed algorithm, a normal node captures the detour degree of the shortest path connecting an anchor pair and itself by comparing the measured hop count and the expected hop count, and the node estimates the distances to the anchors based on the detour degree. The normal node repeats this procedure with all anchor combinations and pinpoints its location using the obtained distance estimates. The proposed algorithm requires fewer anchors and less communication overhead compared to existing range-free algorithms. We showed the superiority of the proposed algorithm over existing range-free algorithms through MATLA simulations.

Adaptive Chirp Beamforming for Direction-of-Arrival Estimation of Wideband Chirp Signals in Sensor Arrays (광대역 chirp 신호의 방위각 추정을 위한 적응 빔 형성)

  • Kim, Jeong-Soo;Choi, Byung-Woong;Bae, Eun-Hyon;Lee, Kyun-Kyung
    • The Journal of the Acoustical Society of Korea
    • /
    • v.27 no.2
    • /
    • pp.87-91
    • /
    • 2008
  • In this paper, the adaptive chirp beamforming method is proposed to solve the bias problem in the direction-of-arrivals (DOAs) estimation of the wideband chirp signals which have an identical time-frequency parameter and are emanated from different directions. The source location bias results from the interferences impinging on the array from the other directions. The proposed method exploits the time-frequency structure of the chirp signal based on STMV (STeered Minimum Valiance) to improve the DOA estimation performance by minimizing the chirp interferences effectively. Simulation results show the DOA estimation performance achieved by the proposed method as compared to the conventional methods.

Updating Smartphone's Exterior Orientation Parameters by Image-based Localization Method Using Geo-tagged Image Datasets and 3D Point Cloud as References

  • Wang, Ying Hsuan;Hong, Seunghwan;Bae, Junsu;Choi, Yoonjo;Sohn, Hong-Gyoo
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.37 no.5
    • /
    • pp.331-341
    • /
    • 2019
  • With the popularity of sensor-rich environments, smartphones have become one of the major platforms for obtaining and sharing information. Since it is difficult to utilize GNSS (Global Navigation Satellite System) inside the area with many buildings, the localization of smartphone in this case is considered as a challenging task. To resolve problem of localization using smartphone a four step image-based localization method and procedure is proposed. To improve the localization accuracy of smartphone datasets, MMS (Mobile Mapping System) and Google Street View were utilized. In our approach first, the searching for candidate matching image is performed by the query image of smartphone's using GNSS observation. Second, the SURF (Speed-Up Robust Features) image matching between the smartphone image and reference dataset is done and the wrong matching points are eliminated. Third, the geometric transformation is performed using the matching points with 2D affine transformation. Finally, the smartphone location and attitude estimation are done by PnP (Perspective-n-Point) algorithm. The location of smartphone GNSS observation is improved from the original 10.204m to a mean error of 3.575m. The attitude estimation is lower than 25 degrees from the 92.4% of the adjsuted images with an average of 5.1973 degrees.

A Hardwired Location-Aware Engine based on Weighted Maximum Likelihood Estimation for IoT Network (IoT Network에서 위치 인식을 위한 가중치 방식의 최대우도방법을 이용한 하드웨어 위치인식엔진 개발 연구)

  • Kim, Dong-Sun;Park, Hyun-moon;Hwang, Tae-ho;Won, Tae-ho
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.53 no.11
    • /
    • pp.32-40
    • /
    • 2016
  • IEEE 802.15.4 is the one of the protocols for radio communication in a personal area network. Because of low cost and low power communication for IoT communication, it requires the highest optimization level in the implementation. Recently, the studies of location aware algorithm based on IEEE802.15.4 standard has been achieved. Location estimation is performed basically in equal consideration of reference node information and blind node information. However, an error is not calculated in this algorithm despite the fact that the coordinates of the estimated location of the blind node include an error. In this paper, we enhanced a conventual maximum likelihood estimation using weighted coefficient and implement the hardwired location aware engine for small code size and low power consumption. On the field test using test-beds, the suggested hardware based location awareness method results better accuracy by 10 percents and reduces both calculation and memory access by 30 percents, which improves the systems power consumption.

A User's Location Localization Method using Smartphone Sensor on a Subway (지하철에서 스마트폰 센서를 이용한 사용자 위치 추적 방법)

  • Cho, Jung-Gil
    • Journal of the Korea Convergence Society
    • /
    • v.11 no.3
    • /
    • pp.37-43
    • /
    • 2020
  • Smartphone-based localization has been widely studied in many different scenarios. But as far as we know, few work has addressed the problem of localization in underground public transportation systems, where GPS signal and wireless infrastructure are not always available. Knowing the location of a train is necessary to develop a useful service for subway passengers. And so, estimation of motion state and stop station by using sensors on a smartphone is being studied for subway passengers. This paper proposes a localization method that uses a barometer and a magnetic sensor on a smartphone. The method proposed in this paper first estimates whether the train runs or stops according to the change in air pressure and the strength of the magnetic field. The altitude value and the magnetic field value are then used to estimate the exact stop station of the train. We evaluated the proposed method using data from the Seoul's subway line 5. Compared with previous methods, the proposed method achieves higher accuracy.

Fixed node reduction technique using relative coordinate estimation algorithm (상대좌표 추정 알고리즘을 이용한 고정노드 저감기법)

  • Cho, Hyun-Jong;Kim, Jong-Su;Lee, Sung-Geun;Kim, Jeong-Woo;Seo, Dong-Hoan
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.37 no.2
    • /
    • pp.220-226
    • /
    • 2013
  • Recently, with the rapid development of factory automation and logistics system, a few workers were able to manage the broad workplace such as large vessels and warehouse. To estimate the exact location of these workers in the conventional wireless indoor localization systems, three or more fixed nodes are generally used to recognize the location of a mobile node consisting of a single node. However, these methods are inefficient in terms of node deployment because the broad workplace requires a lot of fixed nodes compared to workers(mobile nodes). Therefore, to efficiently deploy fixed nodes in these environments that need a few workers, this paper presents a novel estimation algorithm which can reduce the number of fixed nodes by efficiently recognizing the relative coordinates of two fixed nodes through a mobile node composed of three nodes. Also, to minimize the distance errors between mobile node and fixed node, rounding estimation(RE) technique is proposed. Experimental results show that the error rate of localization is improved, by using proposed RE technique, 90.9% compared to conventional trilateration in the free space. In addition, despite the number of fixed nodes can be reduced by up to 50% in the indoor free space, the proposed estimation algorithm recognizes precise location which has average error of 0.15m.

Implementation for precisely localizing and parking of Bimodal Tram (바이모달 트램의 위치 인식 방법 및 정밀 정차 구현)

  • Seo, Ki-Won;Park, Ju-Yeon;Lee, Sang-Nam;Ryu, Hee-Moon;Byun, Yeun-Sub
    • Proceedings of the KSR Conference
    • /
    • 2009.05a
    • /
    • pp.452-456
    • /
    • 2009
  • This paper presents a method for precisely localizing and parking of bimodal trams. In order to gam an automatically driving system for bimodal trams, precise up-to-date localization, velocity recognition, distance to next station and precise parking location estimation functions are required. This paper proposes a system consisting of control device, steering device, sensor input equipment, driving system, tachometer, vehicle-side sensors, magnetic markers and magnetic sensors. The tram recognizes the precise location via magnetic markers containing information. Parking position and precise distance calculation is embodied by a tachometer. The vehicle-side sensors are used to assure safe station approaching and parking magnetic markers provide improvement of precision while tram parking. This paper provides a system realizing localization and precise parking and afterwards the automatic drive test results are reported and analyzed.

  • PDF

A Study on magnetic sensor calibration for indoor smartphone position tracking (스마트폰 실내 위치 추적을 위한 지자기 센서 보정에 관한 연구)

  • Lee, Dongwook;Oh, Jongtaek
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.18 no.6
    • /
    • pp.229-235
    • /
    • 2018
  • Research on indoor location tracking technology using smart phone is actively being carried out. Especially, in order to display the movement path of the smartphone on the map, the azimuth angle should be estimated by using the geomagnetic sensor built in most smart phones. Due to the distortion of the magnetic field due to the surrounding steel structure and the inclination of the smartphone, the estimation error of azimuthal angle may be occurred. In this paper, we propose a correction method of the geomagnetic sensor at the stationary state and a correction method for the inclination of the smartphone. We also propose a method to correct the azimuth error due to the difference between the magnetic north and the grid north.

Evaluation of Velocity and Source Locations of Acoustic Signals in PSC Beam (AE기법을 이용한 PSC보의 음파속도 및 음원위치 산정)

  • Youn, Seok-Goo;Kim, Eun-Keum;Choi, Min-Seok
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.05a
    • /
    • pp.330-333
    • /
    • 2006
  • In this paper experimental tests were performed to evaluate velocities of the acoustic waves through prestressed concrete beam and source locations using AE technique. Seven AE sensors are mounted on the surface of 5m length test beam with equal spacing and using Schmidt Hammer AE events are made 18 locations. The velocities of AE signals are evaluated using the time differences of arrival times and the distances between the AE source loactions and the AE sensor locations. In addition, using the Least Square Method, the AE source locations are re-evaluated reversely using both of the arrival times and the velocities of AE signals. Test results show the average velocity of the AE signals is about 4,000m/sec and the velocity decreased with the increase of the trevalling times due to the effect of attenuation. Based on the estimation of the source locations, it is observed that the accuracy of source location is increased when the velocity of each AE sensor used rather than the average velocity.

  • PDF

A Study on the robust fault diagnosis and fault tolerant control method for the closed-loop control systems (폐회로 제어시스템의 강인한 고장진단 및 고장허용제어 기법 연구)

  • Lee, Jong-Hyo;Lyou, Joon
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.3 no.1
    • /
    • pp.138-145
    • /
    • 2000
  • This paper presents a robust fault diagnosis and fault tolerant control method for the control systems in closed-loop affected by unknown inputs or disturbances. The fault diagnostic scheme is based on the disturbance-decoupled state estimation using a 2-stage state observer for state, actuator bias and sensor bias. The estimated bias show the occurrence time, location and type of the faults directly. The estimated state is used for state feedback to achieve fault tolerant control against the faults. Simulation results show that the method has definite fault tolerant ability against actuator and sensor faults, moreover, the faults can be detected on-line, isolated and estimated simultaneously.

  • PDF